MORE HYPOTHESIS TESTING




PART 1
Testing a Claim about a Mean,
Standard Deviation Unknown



If we are testing a claim about a mean and the standard
deviation is unknown, then we do a t-test using the
t distribution.
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Our main requirement is that either our sample size
Is large (n > 30) or that the parent population be
normally distributed.

However, be aware that the t-test is robust. This means
that it tends to work well even when our population is not
normally distributed.
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And as usual, we will be able to do the test on our
TI calculator by selecting T-Test.



Example 1. A simple random sample of 50 adults is
obtained, and each person’s red blood cell count is
measured. The sample mean is 5.23 and the sample
standard deviation is 0.54. At the .01 level of significance,
IS our result significantly greater than 5.17?
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Example 1. A simple random sample of 50 adults is
obtained, and each person’s red blood cell count is
measured. The sample mean is 5.23 and the sample
standard deviation is 0.54. At the .01 level of significance,
IS our result significantly greater than 5.17?
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Test Statistic Formula: t = H
s/</n

Degrees of Freedom: df =49
_evel of Significance: o =.01
P-Value: P =0.0475
Decision: Fail to reject H,,




Example 2. The claim is that the Merriam Webster
Collegiate Dictionary has, on average, 48 defined words
per page. Below are the numbers of defined words found
In a simple random sample of ten pages. Assuming that
the overall distribution of words is normal, at the .05 level
of significance determine if the data supports the above claim.
51, 63, 36, 43, 34, 62, 73, 39, 53, 79
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Example 2. The claim is that the Merriam Webster
Collegiate Dictionary has, on average, 48 defined words
per page. Below are the numbers of defined words found
In a simple random sample of ten pages. Assuming that
the overall distribution of words is normal, at the .05 level
of significance determine if the data supports the above claim.
51, 63, 36, 43, 34, 62, 73, 39, 53, 79

H,: x=48

H,: u+48

Test Statistic Formula: t = ~—#
s/</n

Degrees of Freedom: df =9
Level of Significance: « =.05
P-Value: P=0.3123
Decision: Falil to reject H,



PART 2
Testing a Claim about a Proportion



FACT: A binomial distribution with n trials and probability
of success p and probability of failureg=1—-pis
approximately normally distributed if both np and nqg are
greater than or equal to 5.

np=>>5
ng=>>5



Example 3. In a Pew Research Center poll of 745
randomly selected adults, 589 said that it is morally wrong
to not report all income on tax returns. Use a 0.05
significance level to test the claim that 75% of adults say
that it is morally wrong to not report all income on tax

returns.
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Example 3. In a Pew Research Center poll of 745
randomly selected adults, 589 said that it is morally wrong
to not report all income on tax returns. Use a 0.05
significance level to test the claim that 75% of adults say
that it is morally wrong to not report all income on tax
returns.

Hy:p=.75

H,: p=.75

p—p
J(pa)/n

_evel of Significance: o =.05
P-Value: P =0.0105
Decision: Reject H,

Test Statistic Formula: z =




Example 4: In a presidential election, 308 out of 611
voters surveyed said that they voted for the candidate
who won. If the actual percentage of votes for the winning
candidate was 43%, use the .01 level of significance to
test the claim that the percentage of voters who said they
voted for the winner is not significantly different from 43%.
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Example 4: In a presidential election, 308 out of 611
voters surveyed said that they voted for the candidate
who won. If the actual percentage of votes for the winning
candidate was 43%, use the .01 level of significance to
test the claim that the percentage of voters who said they
voted for the winner is not significantly different from 43%.

H,: p=.43
H :p=#.43

Test Statistic Formula: z =

p-p
J(pa)/r
_evel of Significance: o =.01
P-Value: P =0.0002
Decision: Reject H,




PART 3
Testing a Claim about Two Means using
Independent Samples



CONDITION: The samples are either large, n; & n,

both greater than 30, or they come from populations that
are normally distributed. Additionally, we do not assume
that the variances of the samples are equal, but we do
assume that the samples are independent.




TEST STATISTIC:
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Example 5. Below is information from two independent
samples on the average number of words in a day spoken
by men and women. Test at the .05 level of significance
the claim that men and women speak, on average, the
same number of words each day.

Men: X, =15668.5 s, =8632.5 n, =186
Women: X, =16215.0 s,=7301.2 n, =210
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Example 5. Below is information from two independent
samples on the average number of words in a day spoken
by men and women. Test at the .05 level of significance
the claim that men and women speak, on average, the
same number of words each day.

Ho g = 14
Hy o # 1,

Y1 - Y2
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1 + 2
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_evel of Significance: o =.05
P-Value: P =0.4997738726 ~ 0.5000

Decision: Fall to reject H,

Test Statistic Formula: t =




Example 6: A group of supermodels has an average
height of 70 inches with a standard deviation of 1.5 inches.
If a sample of heights of 40 ordinary women has a mean
of 63.2 inches and a standard deviation of 2.7 inches, use
a 0.01 significance level to test the claim that the mean
height of the supermodels is greater than that of ordinary
women. Assume all samples come from normal distributions.

Super: =70 s=15 n=9
Ordinary: X, =63.2 s,=2.7 n,=40
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Example 6: A group of supermodels has an average
height of 70 inches with a standard deviation of 1.5 inches.
If a sample of heights of 40 ordinary women has a mean
of 63.2 inches and a standard deviation of 2.7 inches, use
a 0.01 significance level to test the claim that the mean
height of the supermodels is greater than that of ordinary
women. Assume all samples come from normal distributions.
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Example 6: A group of supermodels has an average

height of 70 inches with a standard deviation of 1.5 inches.

If a sample of heights of 40 ordinary women has a mean

of 63.2 inches and a standard deviation of 2.7 inches, use

a 0.01 significance level to test the claim that the mean
height of the supermodels is greater than that of ordinary
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Level of Significance: a =.01

P-Value: P =4.034092x107° ~ 0"
Decision: Reject H,

If the P is low, the null must go!



