MEASURES OF VARIATION
In addition to knowing what the center of our data is, we also want to know how spread out the data is. We call our techniques for this measures of variation.
Below are two sets of numbers. Both sets have a mean of 70, but clearly one data set has more variation than the other.

\[50, 60, 70, 75, 95 \]

\[70, 70, 70, 70, 70 \]

\[\mu = 70 \]
How can we measure the variation in data sets such as the one below?

$$\mu = 70$$

50, 60, 70, 75, 95
One way we can do it is very quick, but also not very reliable in practice. It’s called the **range**. Why is this measure of variation almost worthless?

50, 60, 70, 75, 95

$$\text{range} = \text{high} - \text{low} = 95 - 50 = 45$$
Another approach might be to find the difference between each score and the mean, and then compute the average difference. However, the table on the next slide shows us that there is a problem with this method.

$\mu = 70$
Another approach might be to find the difference between each score and the mean, and then compute the average difference.

\[
\mu = 70
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x - \mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-20</td>
</tr>
<tr>
<td>60</td>
<td>-10</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>95</td>
<td>25</td>
</tr>
</tbody>
</table>
Another approach might be to find the difference between each score and the mean, and then compute the average difference.

50, 60, 70, 75, 95

\[\mu = 70 \]

<table>
<thead>
<tr>
<th>x</th>
<th>x - \mu</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-20</td>
</tr>
<tr>
<td>60</td>
<td>-10</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>95</td>
<td>25</td>
</tr>
</tbody>
</table>

\[\Sigma (x - \mu) = 0 \]
The problem is that the negative and the positive differences completely cancel each other out giving us a sum of zero, and this will happen every time.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$μ$</td>
<td>70</td>
</tr>
</tbody>
</table>

$\sum (x - μ) = 0$
A way around this problem is to **square the difference between each score and the mean** in order to eliminate negative numbers.

50, 60, 70, 75, 95

\[\mu = 70 \]

<table>
<thead>
<tr>
<th>x</th>
<th>x - (\mu)</th>
<th>(x - (\mu))^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-20</td>
<td>400</td>
</tr>
<tr>
<td>60</td>
<td>-10</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>95</td>
<td>25</td>
<td>625</td>
</tr>
</tbody>
</table>

\[\text{sum} = 1150 \]
Next, we’ll find the average squared difference, and then to somewhat undo the effect of squaring, we’ll take the square root of the whole thing.

\[
\mu = 70
\]

<table>
<thead>
<tr>
<th>x</th>
<th>x - (\mu)</th>
<th>((x - \mu)^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-20</td>
<td>400</td>
</tr>
<tr>
<td>60</td>
<td>-10</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>95</td>
<td>25</td>
<td>625</td>
</tr>
</tbody>
</table>

\[
\text{sum} = 1150
\]
This particular method of measuring variation is called the standard deviation.

\[
\text{standard deviation} = \sqrt{\frac{\sum (x - \mu)^2}{n}}
\]
However, if we are finding the standard deviation of a sample, then we divide by \(n-1 \) instead of \(n \). This results in a better estimate of the population standard deviation. However, the reason why is very technical.

\[
\text{population standard deviation } = \sigma = \sqrt{\frac{\sum (x - \mu)^2}{n}}
\]

\[
\text{sample standard deviation } = s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}
\]
Both of these calculations are done automatically for us by our TI calculator. Enter your data into List 1, and go to Stats → Calc.

\[
s \approx 16.956
\]

\[
\sigma \approx 15.166
\]
The square of the standard deviation is called the variance.

population variance

\[
\text{population variance } = \sigma^2 = \frac{\sum (x - \mu)^2}{n}
\]

sample variance

\[
\text{sample variance } = s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}
\]
Now for some algebra magic.

\[
\sigma^2 = \frac{\sum (x - \mu)^2}{n} = \frac{\sum (x^2 - 2\mu x + \mu^2)}{n} = \frac{\sum x^2 - \sum 2\mu x + \sum \mu^2}{n}
\]

\[
= \frac{\sum x^2 - 2\mu \sum x + n\mu^2}{n} = \frac{\sum x^2 - 2 \left(\frac{\sum x}{n} \right) \sum x + n \left(\frac{\sum x}{n} \right)^2}{n}
\]

\[
= \frac{\sum x^2 - \frac{2(\sum x)^2}{n} + \frac{(\sum x)^2}{n}}{n} = \frac{\sum x^2 - \left(\frac{\sum x}{n} \right)^2}{n}
\]
Take the square root and we get what we call the raw score formula for the population standard deviation.

\[\sigma = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n}} \]
And, of course, the **raw score formula for the sample standard deviation** is very similar.

\[s = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n}} \]
If we had grouped data, we could use the raw score formula to find the standard deviation. However, it’s easier to let the calculator do the work for us.

Class midpoints: 44.5, 54.5, 64.5, 74.5, 84.5, 94.5

\[
\sigma = \sqrt{\frac{\sum f \cdot x^2 - \left(\sum f \cdot x\right)^2}{\sum f}}
\]
An interesting result is Chebyshev’s Theorem that says that for any type of distribution of data, the proportion of that data that lies within k standard deviations of the mean, for $k > 1$, is at least $1 - 1/k^2$.

For $k = 2$, $1 - \frac{1}{2^2} = \frac{3}{4} = 75\%$ of the data (at least) lies within 2 standard deviations of the mean.

For $k = 3$, $1 - \frac{1}{3^2} = \frac{8}{9} \approx 89\%$ of the data (at least) lies within 3 standard deviations of the mean.
Often, however, we can do better than Chebyshev’s Theorem because frequently data has a bell-shaped distribution known as the normal curve.
In a normal distribution, 68% of the data is within 1 standard deviation of the mean, 95% is within 2 standard deviations, and 99.7% is within 3 standard deviations of the mean.
Because so many things are normally distributed and because most of the data in a normal distribution is within 2 standard deviations of the mean, we get the following \textit{Rules of Thumb}.

Rule 1: A \textit{usual value} is within two standard deviations of the mean. An \textit{unusual value} is more than two standard deviations away from the mean.

Rule 2: A rough estimate of the sample standard deviation is $s = \frac{\text{range}}{4}$.