BAYES' THEOREM

Thomas Bayes (c. 1702 - 17 April 1761) was a British mathematician and Presbyterian minister, known for having formulated a specific case of the theorem that bears his name: Bayes' theorem, which was published posthumously.

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke, 1 in 2500 will get lung cancer.

If someone has lung cancer, what is the probability that they smoke?

The Problem

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke,
1 in 2500 will get lung cancer.
If someone has lung cancer, what is the probability that they smoke?

$$
\begin{aligned}
\text { Let } S & =\text { people who smoke } \\
L & =\text { people with lung cancer }
\end{aligned}
$$

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke,
1 in 2500 will get lung cancer.
If someone has lung cancer, what is the probability that they smoke?

$$
\begin{aligned}
\text { Let } S & =\text { people who smoke } \\
L & =\text { people with lung cancer } \\
P(S) & =?
\end{aligned}
$$

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke,
1 in 2500 will get lung cancer.
If someone has lung cancer, what is the probability that they smoke?

$$
\begin{aligned}
\text { Let } S & =\text { people who smoke } \\
L & =\text { people with lung cancer } \\
P(S) & =0.2
\end{aligned}
$$

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke,
1 in 2500 will get lung cancer.
If someone has lung cancer, what is the probability that they smoke?

```
Let \(S=\) people who smoke
    \(L=\) people with lung cancer
\(P(S)=0.2\)
\(P(L\) given \(S)=?\)
```

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke,
1 in 2500 will get lung cancer.
If someone has lung cancer, what is the probability that they smoke?

$$
\begin{aligned}
& \text { Let } S=\text { people who smoke } \\
& L=\text { people with lung cancer } \\
& P(S)=0.2 \\
& P(L \text { given } S)=0.01
\end{aligned}
$$

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke,
1 in 2500 will get lung cancer.
If someone has lung cancer, what is the probability that they smoke?

```
Let \(S=\) people who smoke
    \(L=\) people with lung cancer
    \(P(S)=0.2\)
    \(P(L\) given \(S)=0.01\)
    \(P\left(L\right.\) given \(\left.S^{c}\right)=\) ?
```

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke,
1 in 2500 will get lung cancer.
If someone has lung cancer, what is the probability that they smoke?

```
Let \(S=\) people who smoke
    \(L=\) people with lung cancer
    \(\mathrm{P}(\mathrm{S})=0.2\)
    \(P(L\) given \(S)=0.01\)
    \(P\left(L\right.\) given \(\left.S^{c}\right)=1 / 2500=0.0004\)
```

Approximately 20\% of Americans smoke.
Of those who smoke, 1\% develop lung cancer.
Of those who don't smoke,
1 in 2500 will get lung cancer.
If someone has lung cancer, what is the probability that they smoke?

```
Let S = people who smoke
    \(\mathrm{L}=\) people with lung cancer
    \(P(S)=0.2\)
    \(P(L\) given \(S)=0.01\)
    \(P\left(L\right.\) given \(\left.S^{c}\right)=1 / 2500=0.0004\)
    Find \(\mathrm{P}(\mathrm{S}\) given L\()\)
```


What is $\mathrm{P}(\mathrm{S}$ given L$)$?

What is $\mathrm{P}(\mathrm{S}$ given L$)$?

$$
P(S \text { given } L)=\frac{P(S \cap L)}{P(L)}=\frac{P(L \cap S)}{P(L)}
$$

What is $\mathrm{P}(\mathrm{S}$ given L$)$?

$$
\begin{aligned}
P(S \text { given } L)= & \frac{P(S \cap L)}{P(L)}=\frac{P(L \cap S)}{P(L)} \\
& =\frac{P(L \cap S)}{P(L \cap S)+P\left(L \cap S^{c}\right)}
\end{aligned}
$$

Since $L=(L \cap S) \cup\left(L \cap S^{c}\right)$

$P(S$ given $L)=\frac{P(L \cap S)}{P(L \cap S)+P\left(L \cap S^{c}\right)}$

$$
P(S \text { given } L)=\frac{P(L \cap S)}{P(L \cap S)+P\left(L \cap S^{c}\right)}=\frac{(.2)(.01)}{(.2)(.01)+(.8)(.0004)} \approx 0.86
$$

BAYES' THEOREM

version 1
$P(S$ given $L)=\frac{P(L \cap S)}{P(L \cap S)+P\left(L \cap S^{c}\right)}$

BAYES' THEOREM

version 1
$P(S$ given $L)=\frac{P(L \cap S)}{P(L \cap S)+P\left(L \cap S^{c}\right)}$

$$
=\frac{P(S) P(L \text { given } S)}{P(S) P(L \text { given } S)+P\left(S^{c}\right) P\left(L \text { given } S^{c}\right)}
$$

BAYES' THEOREM

version 2
If $S_{1}, S_{2}, \ldots, S_{n}$ are pairwise disjoint sets whose union is the entire sample space S, and if A is a subset of S, then,
$P\left(S_{1}\right.$ given $\left.A\right)=\frac{P\left(S_{1}\right) P\left(\text { Agiven }_{1}\right)}{P\left(S_{1}\right) P\left(\text { Agiven } S_{1}\right)+P\left(S_{2}\right) P\left(\text { Agiven }_{2}\right)+\cdots+P\left(S_{n}\right) P\left(\text { Agiven }_{n}\right)}$

BAYES' THEOREM

version 2

If $S_{1}, S_{2}, \ldots, S_{n}$ are pairwise disjoint sets whose union is the entire sample space S, and if A is a subset of S, then,
$P\left(S_{1}\right.$ given $\left.A\right)=\frac{P\left(S_{1}\right) P\left(\text { Agiven } S_{1}\right)}{P\left(S_{1}\right) P\left(\text { Agiven } S_{1}\right)+P\left(S_{2}\right) P\left(\text { Agiven } S_{2}\right)+\cdots+P\left(S_{n}\right) P\left(\text { A given } S_{n}\right)}$

$$
=\frac{P\left(A \cap S_{1}\right)}{P\left(A \cap S_{1}\right)+P\left(A \cap S_{2}\right)+\cdots+P\left(A \cap S_{n}\right)}
$$

$$
P(S \text { given } L)=\frac{P(L \cap S)}{P(L \cap S)+P\left(L \cap S^{c}\right)}=\frac{(.2)(.01)}{(.2)(.01)+(.8)(.0004)} \approx 0.86
$$

Example 2, Page 402:
Registered voters in Marin County are 45\% Democratic, 30\% Republican, and 25\% Independent. In the last election for county supervisor, 70\% of the Democrats voted, as did 80% of the Republicans and 90% of the Independents. What is the probability that a randomly selected voter in this election was a Democrat?

Problem 9, Page 405:

In 1986 the Reagan administration issued an executive order allowing agency heads to subject all employees to urine tests for drugs. Suppose that the test is 95\% accurate both in identifying drug users and in clearing nonusers. Suppose also that 1\% of employees use drugs. What is the probability that a person who tests positive is not a drug user?

