# CONDITIONAL PROBABILITY 

|  | democrat republican |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
|  | 20 | 30 | 50 |
|  | 40 | 10 | 50 |
|  | 60 | 40 | 100 |

Suppose we have 100 people vote in an election, and the breakdown by party and gender is as indicated in the table below.

|  | democrat republican |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
| female | 20 | 30 | 50 |
|  | 40 | 10 | 50 |
|  | 60 | 40 | 100 |

Often times we will want to ask question like, "What is the probability that someone is female given that they are democrat?"

|  | democrat republican |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
|  | 20 | 30 | 50 |
|  | 40 | 10 | 50 |
|  | 60 | 40 | 100 |

We call this a conditional probability, and the condition redefines our sample space.

|  | democrat republican |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
|  | 20 | 30 | 50 |
|  | 40 | 10 | 50 |
|  | 60 | 40 | 100 |

Below, we let $F=$ female and $D=$ democrat.
$P($ female given democrat $)=P(F \mid D)=\frac{40}{60}=\frac{2}{3}$

|  | democrat republican |  |
| :--- | :--- | :--- |
|  |  |  |
|  | 20 | 30 |
|  | 50 |  |
|  | 40 | 10 |
|  | 60 | 40 |

Notice that we can also write things as follows:

$$
\begin{aligned}
& P(D)=60 / 100 \\
& P(F \& D)=P(F \cap D)=40 / 100 \\
& P(F \mid D)=\frac{40}{60}=\frac{40 / 100}{60 / 100}=\frac{P(F \& D)}{P(D)}=\frac{P(F \cap D)}{P(D)}
\end{aligned}
$$

This leads to the following two formulas for conditional probability.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A \& B)}{P(B)}
$$

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(B \& A)}{P(A)}=\frac{P(A \& B)}{P(A)}
$$

These formulas result in:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A \& B)}{P(B)} \\
& P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A \& B)}{P(A)}
\end{aligned}
$$

$$
P(A \& B)=P(A \cap B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)
$$

Example: What is the probability of drawing two aces from a deck of 52 cards?

$$
\begin{aligned}
& A=1 \text { st card is an ace } \\
& B=2 \text { nd card is an ace }
\end{aligned}
$$

$$
P(A \& B)=P(A) \cdot P(B \mid A)=\frac{4}{52} \cdot \frac{3}{51}=\frac{12}{2652}=\frac{1}{221} \approx 0.0045
$$

We could also illustrate this with a tree diagram.

$$
\begin{aligned}
& A=1 \text { st card is an ace } \\
& B=2 \text { nd card is an ace }
\end{aligned}
$$



Sometimes it doesn't matter whether $A$ or $B$ happens. The probability of the other event remains the same either way. When this happens, we say that the events are independent.

## Independent events:

$$
\begin{aligned}
& P(A)=P(A \mid B) \\
& P(B)=P(B \mid A) \\
& P(A \& B)=P(A \cap B)=P(A) \cdot P(B)
\end{aligned}
$$

Experiment: If you flip a fair coin twice, what is the probability of getting two heads?


Experiment: If you flip a fair coin twice, what is the probability of getting two heads?

$$
\begin{aligned}
& A=\text { first flip is heads } \\
& B=2 \text { nd flip is heads }
\end{aligned}
$$

## Clearly the events are independent

$$
P(A \& B)=P(A \cap B)=P(A) \cdot P(B)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}=0.25
$$

And here's a tree diagram!
$A=$ first flip is heads
$B=2 n d$ flip is heads


## Question: Do independence and mutually exclusive mean the same thing?

# Question: Do independence and mutually exclusive mean the same thing? 

## No, they are totally opposite!

