## FUNCTIONS OF SEVERAL VARIABLES



## What is a function of several variables?



## What is a function of several variables?

A function of several variables is an expression in which the value of a single output is determined by the values of two or more inputs.

## What is a function of several variables?

A function of several variables is an expression in which the value of a single output is determined by the values of two or more inputs.

As usual, a set of specific values for the inputs always determines a specific value for the output.

## Examples:

## 1. Area $=$ Length $\times$ Width

## Examples:

## 1. Area $=$ Length $\times$ Width <br> 2. Perimeter $=2 L+2 W$

## Examples:

1. Area $=$ Length $\times$ Width
2. Perimeter $=2 L+2 W$

$$
\text { 3. } A=P\left(1+\frac{r}{n}\right)^{n t}
$$

## Examples:

$$
\begin{array}{ll}
\text { 1. } & \text { Area }=\text { Length } \times \text { Width } \\
\text { 2. } & \text { Perimeter }=2 L+2 W \\
\text { 3. } & A=P\left(1+\frac{r}{n}\right)^{n t} \\
\text { 4. } & z=f(x, y)=x^{2}+y^{2}
\end{array}
$$

A function of several variables may be expressed in several different ways.

## Verbally:

## "The output is the sum of the squares of the two inputs."

Algebraically:

$$
z=f(x, y)=x^{2}+y^{2}
$$

Numerically:

| $y \backslash x$ | $-\mathbf{2}$ | $\mathbf{- 1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{- 2}$ | 8 | 5 | 4 | 5 | 8 |
| $\mathbf{- 1}$ | 5 | 2 | 1 | 2 | 5 |
| $\mathbf{0}$ | 4 | 1 | 0 | 1 | 4 |
| $\mathbf{1}$ | 5 | 2 | 1 | 2 | 5 |
| $\mathbf{2}$ | 8 | 5 | 4 | 5 | 8 |

## Or Graphically:



We can evaluate a function of several variables by simply plugging in values for each of the variables present.

$$
z=f(x, y)=x y^{2}
$$

$$
\begin{aligned}
& f(1,1)=1 \cdot 1^{2}=1 \\
& f(2,3)=2 \cdot 3^{2}=18 \\
& f(4,2)=4 \cdot 2^{2}=16 \\
& f(-3,-2)=-3 \cdot(-2)^{2}=-12
\end{aligned}
$$

## PLOTTING POINTS

We can locate positions in 3-dimensional space by establishing an $x$-axis, $y$-axis, and $z$-axis, and then specifying an $x$-coordinate, $y$-coordinate, and $z$-coordinate for particular points.


$$
(x, y, z)=(4,2,3)
$$

This orientation called a right-hand coordinate system.


We can use the function below to generate the coordinates of points to plot.

$$
z=f(x, y)=x^{2}+y^{2}
$$

| $y \mathbf{y} \mathbf{x}$ | $\mathbf{- 2}$ | $\mathbf{- 1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{- 2}$ | 8 | 5 | 4 | 5 | 8 |
| $\mathbf{- 1}$ | 5 | 2 | 1 | 2 | 5 |
| $\mathbf{0}$ | 4 | 1 | 0 | 1 | 4 |
| $\mathbf{1}$ | 5 | $\mathbf{2}$ | 1 | 2 | 5 |
| $\mathbf{2}$ | 8 | 5 | 4 | 5 | 8 |

And from there it's just a matter of plotting points until the plot thickens!


One way to analyze a function of several variables is to set the output to a fixed value and see what kind of cross-section this results in.

$$
\begin{aligned}
& z=x^{2}+y^{2} \\
& z=4
\end{aligned}
$$




The cross-section is the circle $x^{2}+y^{2}=4$.

$$
\begin{aligned}
& z=x^{2}+y^{2} \quad x^{2}+y^{2}=4 \\
& Z=4
\end{aligned}
$$




## If we plot these cross-sections on the graph itself, we call them contour lines.



On the other hand, if we plot these cross-sections in the xy-plane, then we call them level curves.

$$
\begin{aligned}
& z=x^{2}+y^{2} \quad x^{2}+y^{2}=4 \\
& Z=4
\end{aligned}
$$




The result is essentially a topographic map.


Notice, too, that anytime the variable expression is $x^{2}+y^{2}$, we're going to get level curves that are circles.

$$
z=\ln \left(x^{2}+y^{2}\right)
$$



Here is the first of the three most important graphs to know. This one is called a paraboloid.

$$
z=x^{2}+y^{2}
$$




## The next one is called a saddle.

$$
z=x^{2}-y^{2}
$$



And finally, any function of the form $z=a x+b y+c$ results in the graph of a plane.

$$
z=2 x+4 y+1
$$




Notice that the slope in the direction of positive $x$ is 2 , and the slope in the direction of positive $y$ is 4 . Also, the $z$-intercept is 1 .

$$
z=2 x+4 y+1
$$




And lastly, here are a variety of interesting graphs for your viewing pleasure.

$$
z=x y
$$




$$
z=|x|+|y|
$$



$$
z=x^{2}
$$



$$
z=\sqrt{x^{2}+y^{2}}
$$



$$
Z=e^{-\left(x^{2}+y^{2}\right)}
$$




$$
z=x^{3}-x y^{2}
$$



$$
z=\sqrt{|x|+|y|}
$$



$$
z=y^{2}+x
$$



$$
z=\ln (|x|+|y|)
$$



$$
z=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}
$$



