FUNCTIONS OF SEVERAL VARIABLES

What is a function of several variables?

What is a function of several variables?

A function of several variables is an expression in which the value of a single output is determined by the values of two or more inputs.

What is a function of several variables?

A function of several variables is an expression in which the value of a single output is determined by the values of two or more inputs.

As usual, a set of specific values for the inputs always determines a specific value for the output.

1. $Area = Length \times Width$

- 1. $Area = Length \times Width$
- 2. Perimeter = 2L + 2W

1.
$$Area = Length \times Width$$

2. $Perimeter = 2L + 2W$
3. $A = P\left(1 + \frac{r}{n}\right)^{nt}$

1. Area = Length × Width 2. Perimeter = 2L + 2W3. $A = P\left(1 + \frac{r}{r}\right)^{nt}$

3.
$$A = P \begin{pmatrix} 1 + - \\ n \end{pmatrix}$$

4. $z = f(x, y) = x^{2} + y^{2}$

A function of several variables may be expressed in several different ways.

Verbally:

"The output is the sum of the squares of the two inputs."

Algebraically:

 $z = f(x, y) = x^2 + y^2$

Numerically:

y\x	-2	-1	0	1	2
-2	8	5	4	5	8
-1	5	2	1	2	5
0	4	1	0	1	4
1	5	2	1	2	5
2	8	5	4	5	8

Or Graphically:

We can evaluate a function of several variables by simply plugging in values for each of the variables present.

$$z = f(x, y) = xy^{2}$$

$$f(1,1) = 1 \cdot 1^{2} = 1$$

$$f(2,3) = 2 \cdot 3^{2} = 18$$

$$f(4,2) = 4 \cdot 2^{2} = 16$$

$$f(-3,-2) = -3 \cdot (-2)^{2} = -12$$

PLOTTING POINTS

We can locate positions in 3-dimensional space by establishing an x-axis, y-axis, and z-axis, and then specifying an x-coordinate, y-coordinate, and z-coordinate for particular points.

$$(x, y, z) = (4, 2, 3)$$

This orientation called a right-hand coordinate system.

We can use the function below to generate the coordinates of points to plot.

$$z = f(x, y) = x^2 + y^2$$

у\х	-2	-1	0	1	2
-2	8	5	4	5	8
-1	5	2	1	2	5
0	4	1	0	1	4
1	5	2	1	2	5
2	8	5	4	5	8

And from there it's just a matter of plotting points until the plot thickens!

One way to analyze a function of several variables is to set the output to a fixed value and see what kind of cross-section this results in.

$$z = x^2 + y^2$$
$$z = 4$$

The cross-section is the circle $x^2+y^2=4$.

If we plot these cross-sections on the graph itself, we call them contour lines.

On the other hand, if we plot these cross-sections in the xy-plane, then we call them level curves.

The result is essentially a topographic map.

Notice, too, that anytime the variable expression is x^2+y^2 , we're going to get level curves that are circles.

$$z = \ln\left(x^2 + y^2\right)$$

Here is the first of the three most important graphs to know. This one is called a *paraboloid*.

 $z = x^2 + y^2$

The next one is called a *saddle*.

$$z = x^2 - y^2$$

And finally, any function of the form z=ax+by+c results in the graph of a *plane*.

z = 2x + 4y + 1

Notice that the slope in the direction of positive *x* is 2, and the slope in the direction of positive *y* is 4. Also, the *z*-intercept is 1.

z = 2x + 4y + 1

And lastly, here are a variety of interesting graphs for your viewing pleasure.

z = xy

-

-

$$z = x^3 - xy^2$$

$$z = y^2 + x$$

$$z = \ln\left(\left|x\right| + \left|y\right|\right)$$

