LAGRANGE MULTIPLIERS




Let’s start with a simple surface, z=f(x,y).
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Clearly, this surface has a minimum point.
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Now, down in the xy-plane, let's add a curve,
g(x,y)=c.
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We can think of this curve as a level curve for a
more general surface graph, g=g(x.,y).
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We can also think of this curve as representing a
constraint on the values for x and y that we can plug
Into our function z=f(x,y).




If we restrict the domain of z=f(x,y) to the curve
g(x,y)=c, then the graph that results Is just a curve
lying on our original surface.
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In this particular case, it's easy to see that this curve

has its own minimum point.
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It's also easy to see that there is a contour, z=k, that
touches our curve at that minimum point.
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If we look at the level curve for this contour, we see
that it Is tangent to the curve g(Xx,y)=c In the xy-plane.
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Hence, our level curve and g(x,y)=c have a common
tangent line in the xy-plane.
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Let’s think about what this means.
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We know that derivatives have something to do
with tangent lines.
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Hence, since our level curves have a common tangent
Ine, we suspect there is a relationship between the
partial derivatives of z=f(x,y) and g=gx,y).
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There is indeed a relationship!
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According to a theorem of Lagrange, at the minimum
point of the particular curve on our surface, the partial
derivatives of z=f(x,y) will be a fixed multiple of the
partial derivatives of g=g(x,y).
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We denote this multiplier by the Greek letter lambda,
and the result is the following set of equations to
solve.
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We denote this multiplier by the Greek letter lambda,
and the result is the following set of equations to
solve.
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We denote this multiplier by the Greek letter lambda,
and the result is the following set of equations to
solve.
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Good Luck!

g(x,y)=c
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EXAMPLE 1: Suppose z = f (X,y) = x* + y* + 20, and our
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constraint curve is X + y = 3. Find the minimum value of
z = f(x,y) on this curve
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z=x"+y*+20
g=X+Yy
ZX:ﬂ’gx 2X:l 2
= =
z,=Ag, 2y=1 4
y_
2
X=3/2
X+y=3:>£+£=3:>l=3:> /
: y=3/2 - -
The minimum point is
5313, 03 49 3 3 49
fl oo |[=—+—+20=—"=245 33 49)_
(2 2) 4 4 (2,2, j (1.5,1.5,24.5).



EXAMPLE 2. Suppose z = f(X,y)=xy+5, and our

constraint curve is X + y = 2. Find the maximum value of
z = f(x,y) on this curve.

Z=Xy+95
g=XxX+y

Zx:ﬂ“gx y=4
— —> X=Y
Zy:ﬂ/gy X:ﬂ

X
X+Y=2=X+X=2=2X=2= ]
y:

The maximum point Is
f(1,1)=11+5=6 (1,1,6)



EXAMPLE 3: Suppose z = f (X,y) = x* + xy + y*, and our

constraint curve is X+ y =4. Find the minimum value of
z = f(x,y) on this curve.

Z=X"+Xy+Vy*
g=x+y

Z,=A9, 2Xx+y=A1

— = 2X+Y=X+2
z,=A9, x+2y=A41 Y Y

= Xx-y=0
= 2X=4=X=2=
X+y=4 y=2
The minimum point is
f(2,2)=2°+2-2+2° =12

(2,2,12).



EXAMPLE 4: A manufacturer has an order for 1000 ultra-deluxe time machines
with built-in MP3 player. Suppose the units are manufactured in two different
locations with x representing the number of units produced in one location

and y the number of units produced in the other. If the total cost of production
is given by z =C(x, y) = x* +10x + 0.50y° +12y —10,000 dollars, find the
values of x and y that will minimize the costs, and find the minimum cost.
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EXAMPLE 4: A manufacturer has an order for 1000 ultra-deluxe time machines
with built-in MP3 player. Suppose the units are manufactured in two different
locations with x representing the number of units produced in one location

and y the number of units produced in the other. If the total cost of production
is given by z =C(x, y) = x* +10x + 0.50y° +12y —10,000 dollars, find the
values of x and y that will minimize the costs, and find the minimum cost.

X+Yy=1000 z, =2x+10 g, =1
g=X+Yy z,=y+12 g, =1

z, =A0, 2x+10=41 x:% A-10

= = = +A4-12=1000
z,=A09, y+12=21

y=4-12

— 2 -10+ 21— 24=2000=> 31 = 2034 = 1 = 678 678-10 .,
X = —

y =678—12 = 666
7 = $334,666



