LAGRANGE MULTIPLIERS

Let's start with a simple surface, $z=f(x, y)$.

Clearly, this surface has a minimum point.

Now, down in the $x y$-plane, let's add a curve, $g(x, y)=c$.

We can think of this curve as a level curve for a more general surface graph, $g=g(x, y)$.

We can also think of this curve as representing a constraint on the values for x and y that we can plug into our function $z=f(x, y)$.

If we restrict the domain of $z=f(x, y)$ to the curve $g(x, y)=c$, then the graph that results is just a curve lying on our original surface.

In this particular case, it's easy to see that this curve has its own minimum point.

It's also easy to see that there is a contour, $z=k$, that touches our curve at that minimum point.

If we look at the level curve for this contour, we see that it is tangent to the curve $g(x, y)=c$ in the $x y$-plane.

Hence, our level curve and $g(x, y)=c$ have a common tangent line in the $x y$-plane.

Let's think about what this means.

We know that derivatives have something to do with tangent lines.

Hence, since our level curves have a common tangent line, we suspect there is a relationship between the partial derivatives of $z=f(x, y)$ and $g=g x, y)$.

There is indeed a relationship!

According to a theorem of Lagrange, at the minimum point of the particular curve on our surface, the partial derivatives of $z=f(x, y)$ will be a fixed multiple of the partial derivatives of $g=g(x, y)$.

We denote this multiplier by the Greek letter lambda, and the result is the following set of equations to solve.

We denote this multiplier by the Greek letter lambda, and the result is the following set of equations to solve.

We denote this multiplier by the Greek letter lambda, and the result is the following set of equations to solve.

Solve this system of $\quad z_{x}=\lambda \cdot g_{x}$
equations and you're

$$
z_{y}=\lambda \cdot g_{y}
$$

done.
$g(x, y)=c$

We denote this multiplier by the Greek letter lambda, and the result is the following set of equations to solve.

Solve this system of $\quad z_{x}=\lambda \cdot g_{x}$
equations and you're $z_{y}=\lambda \cdot g_{y}$ Good Luck! done. $g(x, y)=c$

EXAMPLE 1: Suppose $z=f(x, y)=x^{2}+y^{2}+20$, and our constraint curve is $x+y=3$. Find the minimum value of $z=f(x, y)$ on this curve.

$$
\begin{aligned}
& z=x^{2}+y^{2}+20 \\
& g=x+y \\
& z_{x}=\lambda g_{x} \Rightarrow \begin{array}{l}
2 x=\lambda \\
z_{y}=\lambda g_{y} \\
2 y=\lambda
\end{array} \Rightarrow \begin{array}{r}
x=\frac{\lambda}{2} \\
y=\frac{\lambda}{2}
\end{array} \\
& x+y=3 \Rightarrow \frac{\lambda}{2}+\frac{\lambda}{2}=3 \Rightarrow \lambda=3 \Rightarrow \begin{array}{l}
x=3 / 2 \\
y=3 / 2
\end{array} \\
& f\left(\frac{3}{2}, \frac{3}{2}\right)=\frac{9}{4}+\frac{9}{4}+20=\frac{49}{2}=24.5
\end{aligned}
$$

The minimum point is
$\left(\frac{3}{2}, \frac{3}{2}, \frac{49}{2}\right)=(1.5,1.5,24.5)$.

EXAMPLE 2: Suppose $z=f(x, y)=x y+5$, and our constraint curve is $x+y=2$. Find the maximum value of $z=f(x, y)$ on this curve.

$$
\begin{aligned}
\begin{array}{l}
z=x y+5 \\
g \\
=x+y
\end{array} \\
z_{x}=\lambda g_{x} \Rightarrow \begin{array}{l}
y=\lambda \\
z_{y}=\lambda g_{y}
\end{array} \Rightarrow \begin{array}{l}
x=\lambda
\end{array} \Rightarrow x=y \\
x+y=2 \Rightarrow x+x=2 \Rightarrow 2 x=2 \Rightarrow \begin{array}{l}
x=1 \\
y=1
\end{array} \\
\quad f(1,1)=1 \cdot 1+5=6
\end{aligned}
$$

The maximum point is $(1,1,6)$.

EXAMPLE 3: Suppose $z=f(x, y)=x^{2}+x y+y^{2}$, and our constraint curve is $x+y=4$. Find the minimum value of $z=f(x, y)$ on this curve.

$$
\left.\begin{array}{l}
z=x^{2}+x y+y^{2} \\
g=x+y \\
z_{x}=\lambda g_{x} \Rightarrow \begin{array}{l}
2 x+y=\lambda \\
z_{y}=\lambda g_{y} \\
\Rightarrow x+2 y=\lambda
\end{array} \Rightarrow 2 x+y=x+2 y \\
x-y=0 \\
x+y=4
\end{array} \Rightarrow 2 x=4 \Rightarrow x=2 \Rightarrow \begin{array}{c}
x=2 \\
y=2
\end{array}\right] \begin{aligned}
& f(2,2)=2^{2}+2 \cdot 2+2^{2}=12
\end{aligned}
$$

The minimum point is (2,2,12).

EXAMPLE 4: A manufacturer has an order for 1000 ultra-deluxe time machines with built-in MP3 player. Suppose the units are manufactured in two different locations with x representing the number of units produced in one location and y the number of units produced in the other. If the total cost of production is given by $z=C(x, y)=x^{2}+10 x+0.50 y^{2}+12 y-10,000$ dollars, find the values of x and y that will minimize the costs, and find the minimum cost.

EXAMPLE 4: A manufacturer has an order for 1000 ultra-deluxe time machines with built-in MP3 player. Suppose the units are manufactured in two different locations with x representing the number of units produced in one location and y the number of units produced in the other. If the total cost of production is given by $z=C(x, y)=x^{2}+10 x+0.50 y^{2}+12 y-10,000$ dollars, find the values of x and y that will minimize the costs, and find the minimum cost.

$$
\begin{aligned}
& x+y=1000 \\
& g=x+y
\end{aligned}
$$

EXAMPLE 4: A manufacturer has an order for 1000 ultra-deluxe time machines with built-in MP3 player. Suppose the units are manufactured in two different locations with x representing the number of units produced in one location and y the number of units produced in the other. If the total cost of production is given by $z=C(x, y)=x^{2}+10 x+0.50 y^{2}+12 y-10,000$ dollars, find the values of x and y that will minimize the costs, and find the minimum cost.

$$
\begin{array}{lll}
x+y=1000 & z_{x}=2 x+10 & g_{x}=1 \\
g=x+y & z_{y}=y+12 & g_{y}=1
\end{array}
$$

EXAMPLE 4: A manufacturer has an order for 1000 ultra-deluxe time machines with built-in MP3 player. Suppose the units are manufactured in two different locations with x representing the number of units produced in one location and y the number of units produced in the other. If the total cost of production is given by $z=C(x, y)=x^{2}+10 x+0.50 y^{2}+12 y-10,000$ dollars, find the values of x and y that will minimize the costs, and find the minimum cost.

$$
\begin{aligned}
& \begin{array}{l}
x+y=1000 \\
g=x+y
\end{array} \\
& \begin{array}{l}
z_{x}=2 x+10 \\
z_{x}=\lambda g_{x} \\
z_{y}=\lambda g_{y}=1
\end{array} \Rightarrow \begin{array}{l}
2 x+10=\lambda \\
y+12=\lambda
\end{array} \Rightarrow \begin{array}{l}
x=\frac{\lambda-10}{2} \\
y=\lambda-12
\end{array} \Rightarrow \frac{\lambda-10}{2}+\lambda-12=1000 \\
& \Rightarrow \lambda-10+2 \lambda-24=2000 \Rightarrow 3 \lambda=2034 \Rightarrow \lambda=678
\end{aligned}
$$

EXAMPLE 4: A manufacturer has an order for 1000 ultra-deluxe time machines with built-in MP3 player. Suppose the units are manufactured in two different locations with x representing the number of units produced in one location and y the number of units produced in the other. If the total cost of production is given by $z=C(x, y)=x^{2}+10 x+0.50 y^{2}+12 y-10,000$ dollars, find the values of x and y that will minimize the costs, and find the minimum cost.

$$
\begin{aligned}
& x+y=1000 \\
& z_{x}=2 x+10 \quad g_{x}=1 \\
& g=x+y \quad z_{y}=y+12 \quad g_{y}=1 \\
& \begin{array}{l}
z_{x}=\lambda g_{x} \\
z_{y}=\lambda g_{y}
\end{array} \Rightarrow \begin{array}{l}
2 x+10=\lambda \\
y+12=\lambda
\end{array} \Rightarrow \begin{array}{l}
x=\frac{\lambda-10}{2} \\
y=\lambda-12
\end{array} \Rightarrow \frac{\lambda-10}{2}+\lambda-12=1000 \\
& \Rightarrow \lambda-10+2 \lambda-24=2000 \Rightarrow 3 \lambda=2034 \Rightarrow \lambda=678 \\
& x=\frac{678-10}{2}=334 \\
& y=678-12=666 \\
& z=\$ 334,666
\end{aligned}
$$

