THE NORMAL DISTRIBUTION

We've already seen a few attempts to define what is known as the normal distribution.

We've already seen a few attempts to define what is known as the normal distribution.

1. A bell-shaped distribution that is symmetrical.

We've already seen a few attempts to define what is

 known as the normal distribution.1. A bell-shaped distribution that is symmetrical.
2. A symmetrical bell-shaped distribution that has 68% of its scores within 1 standard deviation of the mean, 95\% within 2 standard deviations, and 99.7% within 3 standard deviations.

And now we are ready for the definitive definition.

1. A bell-shaped distribution that is symmetrical.
2. A symmetrical bell-shaped distribution that has 68% of its scores within 1 standard deviation of the mean, 95\% within 2 standard deviations, and 99.7% within 3 standard deviations.

And now we are ready for the definitive definition.

1. A bell-shaped distribution that is symmetrical.
2. A symmetrical bell-shaped distribution that has 68% of its scores within 1 standard deviation of the mean, 95\% within 2 standard deviations, and 99.7% within 3 standard deviations.
3. A normal distribution a function of the form:

$$
y=f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

In this formula, $m u$ is the mean of the distribution and sigma is the standard deviation

$$
y=f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

The normal distribution with $m u=0$ and sigma $=1$ is called the standard normal distribution.

$$
y=f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

For all normal distributions, the area under the curve is equal to 1 .

$$
y=f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

To find the probability that an x-value below is between zero and two, we just need to know the area under the curve from zero to two.

$$
y=f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

There's a nice tool for doing this under the DISTR menu.

$$
y=f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

The syntax to follows is normalcdf(start,stop).

$$
y=f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

$P(0 \leq z \leq 2)$

Here are some examples of finding probabilities using a standard normal distribution (mean=0, standard deviation=1).

The probability that a score is within 1 standard deviation of the mean.

Here are some examples of finding probabilities using a standard normal distribution (mean=0, standard deviation=1).

The probability that a score is within 1 standard deviation of the mean.

$P(-1 \leq \mathrm{z} \leq 1)$

Here are some examples of finding probabilities using a standard normal distribution (mean=0, standard deviation=1).

The probability that a score is within 2 standard deviations of the mean.

Here are some examples of finding probabilities using a standard normal distribution (mean=0, standard deviation=1).

The probability that a score is within 3 standard deviations of the mean.

What if we want to find the probability that a score's deviation from the mean is greater than 1 (mean=0, standard deviation=1)?

$$
P(z>1)
$$

What if we want to find the probability that a score's deviation from the mean is greater than 1 (mean=0, standard deviation=1)?

We could do it two ways. The less accurate but good enough way is illustrated below.
g9maledf 1,9999
.1586559596
$P(z>1)$

What if we want to find the probability that a score's deviation from the mean is greater than 1 (mean=0, standard deviation=1)?

And this is followed by the more accurate method.

What if we want to find areas or probabilities with respect to some other normal distribution where the mean is not zero and the standard deviation is not one?

What if we want to find areas or probabilities with respect to some other normal distribution where the mean is not zero and the standard deviation is not one?

In that case follow the syntax normalcdf(start,stop,mean,deviation)

What if we want to find areas or probabilities with respect to some other normal distribution where the mean is not zero and the standard deviation is not one?

In that case follow the syntax normalcdf(start,stop,mean,deviation)

```
mormalgdf(85,115
```

Another useful tool is inverse normal tool where we input an area and we get back the z-score that would have that area to the left in a standard normal curve.

The syntax is invNorm(area)

Another useful tool is inverse normal tool where we input an area and we get back the z-score that would have that area to the left in a standard normal curve.

The syntax is invNorm(area)

invNorm.
1.65485626

However, we often use the area to the right to denote this number.

$$
Z_{.05}=1.644853626
$$

Notice that $-z_{.025}$ and $z_{.025}$ give you more accurate bounds for where the middle 95% of the data lies in a normal distribution.

$$
\begin{aligned}
& \text { inuHormi.97539es } \\
& Z_{.025}=1.959963986 \\
& -Z_{.025}=-1.959963986
\end{aligned}
$$

The middle 95% of the data lies between $z=-1.96$ and $z=1.96$.

For most IQ tests, the scores are distributed normally with a mean of 100 and a standard deviation of 15. Find the following probabilities.

A person's IQ is between 90 and 110.

$$
P(90 \leq x \leq 110)=.4950
$$

For most IQ tests, the scores are distributed normally with a mean of 100 and a standard deviation of 15. Find the following probabilities.

A person's IQ is between 120 and 130.

$$
P(120 \leq x \leq 130)=.0685
$$

For most IQ tests, the scores are distributed normally with a mean of 100 and a standard deviation of 15. Find the following probabilities.

A person's IQ is less than 70.

$$
P(x<70)=.0228
$$

For most IQ tests, the scores are distributed normally with a mean of 100 and a standard deviation of 15. Find the following probabilities.

A person's IQ is greater than 140.

```
normalcdf(140,99
```


$$
P(x>140)=.0038
$$

For most IQ tests, the scores are distributed normally with a mean of 100 and a standard deviation of 15. Find the following probabilities.

A person's IQ is less than 152.

```
normgledf(-99999
9,152,160,155458
```

$$
P(x<152)=.9997
$$

We can also find the cutoff score corresponding to the percentage or proportion that we want an IQ to be greater than. We just use the invNorm tool with the following syntax: invNorm(proportion, mean, standard deviation).

What IQ is greater than that of 95% of the population?

$\begin{array}{r} \text { ing Horm } 6.95,160, \\ 124.6728044 \end{array}$

$$
I Q \approx 125
$$

