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And now we are ready for the definitive definition.

1. A bell-shaped distribution that is symmetrical.

2. A symmetrical bell-shaped distribution that has 68% of its scores
within 1 standard deviation of the mean, 95% within 2 standard
deviations, and 99.7% within 3 standard deviations.

3. A normal distribution a function of the form: 
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In this formula, mu is the mean of the distribution and 
sigma is the standard deviation
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The normal distribution with mu = 0 and sigma = 1 is 
called the standard normal distribution.
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For all normal distributions, the area under the curve
is equal to 1.
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To find the probability that an x-value below is between
zero and two, we just need to know the area under the 
curve from zero to two.
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There’s a nice tool for doing this under the DISTR menu.
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The syntax to follows is normalcdf(start,stop).
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Here are some examples of finding probabilities using a
standard normal distribution (mean=0, standard deviation=1).
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Here are some examples of finding probabilities using a
standard normal distribution (mean=0, standard deviation=1).

The probability that a score is within 3 standard deviations of the mean.
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What if we want to find the probability that a score’s deviation 
from the mean is greater than 1 (mean=0, standard deviation=1)?
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We could do it two ways.  The less accurate but good enough way is
illustrated below.
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And this is followed by the more accurate method.
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However, we often use the area to the right to denote this number.

.05 1.644853626z =



Notice that -z.025 and z.025 give you more accurate bounds 
for where the middle 95% of the data lies in a normal 
distribution.

.025 1.959963986z =

.025 1.959963986z− = −

The middle 95% of the data lies between z=-1.96 and z=1.96.



For most IQ tests, the scores are distributed normally
with a mean of 100 and a standard deviation of 15.  Find
the following probabilities.

(90 110) .4950P x≤ ≤ =

A person’s IQ is between 90 and 110.
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A person’s IQ is greater than 140.



For most IQ tests, the scores are distributed normally
with a mean of 100 and a standard deviation of 15.  Find
the following probabilities.

( 152) .9997P x < =

A person’s IQ is less than 152.



We can also find the cutoff score corresponding to the
percentage or proportion that we want an IQ to be greater
than. We just use the invNorm tool with the following
syntax: invNorm(proportion, mean, standard deviation).

125IQ ≈

What IQ is greater than that of 95% of the population?.


