
PARTIAL DERIVATIVES
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( )If we consider the point on the surface of , 
then we can evaluate our partial derivatives at the  
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What does this mean?
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( )
Slice through this surface with the plane , and we'll see a curve
of intersection with the surface and the point 
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There is a line in the plane  that is tangent to the curve
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( )The slope of this line 2, 1 2(2) 4is .xz − = − = −



( )This also means that if we are at the point  on our
surface and if we go 1 unit in the direction of positive , then 
will decrease by approximatly 4 unit
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Similarly, slice through the surface with the plane 2.x =
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( )
If we look at the two tangent lines together, we can see that they 
define a plane that is tangent to the surface at the 2p ,oin ,t .5 1P = − −



Now notice that if we are at the maximum point on our surface,
then the tangent plane will be horizontal and both our tangent lines
will have slope zero.
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But that's another story for another day!


