RANDOM VARIABLES

A random variable is a variable whose numerical values are determined by chance.

A random variable is a variable whose numerical values are determined by chance.

A random variable is discrete if its values do not exist along a continuum. In other words, we think of there being separation between the possible values. Discrete random variables are often the result of a count. Furthermore, our author makes a distinction between finite (discrete) and discrete infinite.

A random variable is a variable whose numerical values are determined by chance.

A random variable is discrete if its values do not exist along a continuum. In other words, we think of there being separation between the possible values. Discrete random variables are often the result of a count. Furthermore, our author makes a distinction between finite (discrete) and discrete infinite.

A random variable is continuous if its values do exist along a continuum. Thus, between any two values of the variable, other possible values exist.

If you flip a coin three times and let $X=$ number of heads, then X is a finite random variable with possible values of $0,1,2, \& 3$.

If you flip a coin three times and let $X=$ number of heads, then X is a finite random variable with possible values of $0,1,2, \& 3$.

If you let $X=$ number of eggs a hen lays, then that is, in theory, a discrete infinite random variable.

If you flip a coin three times and let $X=$ number of heads, then X is a finite random variable with possible values of $0,1,2, \& 3$.

If you let $X=$ number of eggs a hen lays, then that is, in theory, a discrete infinite random variable.

If you let $X=$ amount of milk a cow produces, then that is a continuous random variable.

Let's do the experiment where we flip a fair coin three times and let $X=$ number of heads, and let's consider what could happen.

Let's do the experiment where we flip a fair coin three times and let $X=$ number of heads, and let's consider what could happen.

There are eight possible outcomes.

We can summarize the results in the following table.

$x=$ number of heads	$P(x)$	HHH
0	$1 / 8$	HHT
1	$3 / 8$	$H T H$
2	$3 / 8$	
3	$1 / 8$	$H T T$
		THH
		THT
		TTH
		TTT

This type of table is called a probability distribution.

x = number of heads	$P(x)$	$H H H$
0	$1 / 8$	$H H T$
1	$3 / 8$	$H T H$
2	$3 / 8$	$H T T$
	$1 / 8$	$T H H$
		$T H T$
		$T T H$
		$T T T$

Notice, also, the following:

$x=$ number of heads	$P(x)$	HHH
0	$1 / 8$	
1	$3 / 8$	HHT
2	$3 / 8$	HTH
3	$1 / 8$	HTT
		THH
1. $0 \leq P(x) \leq 1$		THT
		TTH
2. $\sum P(x)=1$		TTT

We can also create a histogram on our calculator for this Probability distribution by completing the following screens:

$x=$ number of heads	$P(x)$	HHH
0	$1 / 8$	HHT
1	$3 / 8$	HTH
2	$3 / 8$	$1 / 8$
3		HTT
		THH
1. $0 \leq P(x) \leq 1$		THT
		TTH
2. $\sum P(x)=1$		TTT

We can also create a histogram on our calculator for this Probability distribution by completing the following screens:


```
WIF[DIDW
    Xmir=-1
    4M.G>=5
    80.60=1
    %in=-2
    MMr=-.2
    サロG>=,5
    MEO=1=1
```


