RANDOM VARIABLES

A *random variable* is a variable whose numerical values are determined by chance.

A *random variable* is a variable whose numerical values are determined by chance.

A random variable is discrete if its values do not exist along a continuum. In other words, we think of there being separation between the possible values. Discrete random variables are often the result of a count. Furthermore, our author makes a distinction between finite (discrete) and discrete infinite.

A *random variable* is a variable whose numerical values are determined by chance.

A *random variable* is *discrete* if its values do not exist along a continuum. In other words, we think of there being separation between the possible values. Discrete random variables are often the result of a count. Furthermore, our author makes a distinction between *finite (discrete)* and *discrete infinite.*

A *random variable* is *continuous* if its values do exist along a continuum. Thus, between any two values of the variable, other possible values exist.

If you flip a coin three times and let X = number of heads, then X is a finite random variable with possible values of 0, 1, 2, & 3.

If you flip a coin three times and let X = number of heads, then X is a finite random variable with possible values of 0, 1, 2, & 3.

If you let X = number of eggs a hen lays, then that is, in theory, a discrete infinite random variable.

If you flip a coin three times and let X = number of heads, then X is a finite random variable with possible values of 0, 1, 2, & 3.

If you let X = number of eggs a hen lays, then that is, in theory, a discrete infinite random variable.

If you let X = amount of milk a cow produces, then that is a continuous random variable.

Let's do the experiment where we flip a fair coin three times and let X = number of heads, and let's consider what could happen.

Let's do the experiment where we flip a fair coin three times and let X = number of heads, and let's consider what could happen.

There are eight possible outcomes.

We can summarize the results in the following table.

x = number of heads	P(x)	HHH
0	1/8	HHT
1	3/8	
2	3/8	HTH
3	1/8	HTT
		THH
		THT
		TTH
		TTT

This type of table is called a *probability distribution*.

x = number of heads	P(x)	HHH
0	1/8	HHT
1	3/8	TITTI
2 3	3/8 1/8	HTH
3	170	HTT
		THH
		THT
		TTH
		TTT

Notice, also, the following:

x = number of heads	P(x)	HHH
0	1/8	HHT
1	3/8	
2 3	3/8	HTH
3	1/8	HTT
$1. \ 0 \le P(x) \le 1$		THH
		THT
2. $\sum P(x) = 1$		TTH
		TTT

We can also create a histogram on our calculator for this Probability distribution by completing the following screens:

x = number of heads	P(x)	HHH
0	1/8	HHT
1	3/8	
2	3/8	HTH
3	1/8	HTT
$1. \ 0 \le P(x) \le 1$		THH
		THT
2. $\sum P(x) = 1$		TTH
		TTT

We can also create a histogram on our calculator for this Probability distribution by completing the following screens:

