
RELATIVE EXTREMA



We often think of a relative or local maximum as a
point that is at the top of a hill and a relative or
local minimum as a point that is at the bottom of
a valley.
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The function value at a relative maximum is 
greater than or equal to that of points close by.
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The function value at a relative minimum is 
less than or equal to that of points close by.
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Together, we call these points relative extrema.
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A relative extreme value can only occur at a point
where the derivative is zero or where it is undefined.
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A point where the first derivative is zero or 
undefined is called a critical point.
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Relative maximums and minimums always occur
at critical points.
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On the other hand, you can have a critical point
without it being either a relative maximum or
minimum.

, but
neither a maximum
crit

not 

ical poin

a min

t

imum

○

3( )f x x=



To find a relative maximum or minimum:
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1.  Find all the critical points.
2.  Examine the graph to see if you have a relativemax or min.
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Another way to khow that we have a relative minimum is to observe
that the sign of the derivative changes from negative to positive as we
pass the critical point.  This is known First Derivas atthe ive Test.
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Let ( , ) be a critical point for a 
function ( ).
Then,

1.  The point ( , ) is a relative minimum point if ( ) 0 for  and  
      ( ) 0 for .

2.  The point (
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