RELATIVE EXTREMA

We often think of a relative or local maximum as a point that is at the top of a hill and a relative or local minimum as a point that is at the bottom of a valley.

relative minimum

The function value at a relative maximum is greater than or equal to that of points close by.

relative minimum

The function value at a relative minimum is less than or equal to that of points close by.

relative minimum

Together, we call these points relative extrema.

relative minimum

A relative extreme value can only occur at a point where the derivative is zero or where it is undefined.

tangent lines have zero slope

relative minimum

A point where the first derivative is zero or undefined is called a critical point.

tangent lines have zero slope

Relative maximums and minimums always occur at critical points.

tangent lines have zero slope

On the other hand, you can have a critical point without it being either a relative maximum or minimum.

$$
f(x)=x^{3}
$$

critical point, but
neither a maximum
not a minimum

To find a relative maximum or minimum:

1. Find all the critical points.
2. Examine the graph to see if you have a relative max or min.

EXAMPLE: Find the relative extrema for $f(x)=x^{2}+2 x-3$.

EXAMPLE: Find the relative extrema for $f(x)=x^{2}+2 x-3$.

$$
f^{\prime}(x)=2 x+2
$$

EXAMPLE: Find the relative extrema for $f(x)=x^{2}+2 x-3$.

$$
\begin{aligned}
& f^{\prime}(x)=2 x+2 \\
& f^{\prime}(x)=0 \Rightarrow 2 x+2=0 \Rightarrow x=-1
\end{aligned}
$$

EXAMPLE: Find the relative extrema for $f(x)=x^{2}+2 x-3$.

$$
\begin{aligned}
& f^{\prime}(x)=2 x+2 \\
& f^{\prime}(x)=0 \Rightarrow 2 x+2=0 \Rightarrow x=-1
\end{aligned}
$$

$$
f(-1)=1-2-3=-4
$$

relative minimum

relative minimum point

Another way to khow that we have a relative minimum is to observe that the sign of the derivative changes from negative to positive as we pass the critical point. This is known as the First Derivative Test.

$$
\begin{aligned}
& f(x)=x^{2}+2 x+3 \\
& f^{\prime}(x)=2 x+2 \\
& f^{\prime}(x)<0 \text { if } x<-1 \\
& f^{\prime}(x)=0 \text { if } x=-1 \\
& f^{\prime}(x)>0 \text { if } x>-1
\end{aligned}
$$

THE FIRST DERIVATIVE TEST: Let (a, b) be a critical point for a function $y=f(x)$.
Then,

1. The point (a, b) is a relative minimum point if $f^{\prime}(x)<0$ for $x<a$ and $f^{\prime}(x)>0$ for $x>a$.
2. The point (a, b) is a relative maximum point if $f^{\prime}(x)>0$ for $x<a$ and $f^{\prime}(x)<0$ for $x>a$.
