RELATIVE EXTREMA




We often think of a relative or local maximum as a
point that is at the top of a hill and a relative or
local minimum as a point that is at the bottom of

a valley.
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The function value at a relative maximum is
greater than or equal to that of points close by.
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The function value at a relative minimum is
less than or equal to that of points close by.
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Together, we call these points relative extrema.
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A relative extreme value can only occur at a point
where the derivative is zero or where it is undefined.
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A point where the first derivative Is zero or
undefined is called a critical point.
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Relative maximums and minimums always occur
at critical points.
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On the other hand, you can have a critical point
without it being either a relative maximum or
minimum.
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To find a relative maximum or minimum:

1. Find all the critical points.
2. Examine the graph to see if you have a relative max ormin.
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EXAMPLE: Find the relative extrema for f (x) = x* +2x — 3.
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Another way to khow that we have a relative minimum Is to observe
that the sign of the derivative changes from negative to positive as we
pass the critical point. This is known as the First Derivative Test.
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THE FIRST DERIVATIVE TEST: Let (a,b) be a critical point for a
function y = f (x).
Then,

1. The point (a,b) is a relative minimum point if f '(x) <0 for x < a and
f'(x)>0 forx > a.

2. The point (a,b) is a relative maximum point if f '(x) >0 for x < a and
f'(x) <0 forx > a.



