ROW OPERATIONS

Suppose we have a system of equations like the one below. Then there are things you can do to the equations that won't alter the solutions to the system.

$$
\begin{aligned}
& x+2 y=5 \\
& 2 x-y=0
\end{aligned}
$$

For example, you can interchange two equations.

$$
\begin{aligned}
& x+2 y=5 \\
& 2 x-y=0
\end{aligned} \xrightarrow[R_{1} \leftrightarrow R_{2}]{ } \begin{aligned}
& 2 x-y=0 \\
& x+2 y=5
\end{aligned}
$$

You can multiply an equation by a non-zero number.

$$
\begin{aligned}
& x+2 y=5 \\
& 2 x-y=0
\end{aligned} \xrightarrow{-2 R_{1} \rightarrow R_{1}} \quad \begin{gathered}
-2 x-4 y=-10 \\
2 x-y=0
\end{gathered}
$$

And you can add a multiply of one equation to another.

$$
\begin{aligned}
& x+2 y=5 \\
& 2 x-y=0
\end{aligned} \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}} \begin{aligned}
& x+2 y=5 \\
& -5 y=-10
\end{aligned}
$$

These kinds of operations performed on a system of equations are called row operations, and they can be used to help us systematically solve the system.

Row Operations:

1. Interchange two rows.
2. Multiply a row by a nonzero number.
3. Add a multiple of one row to another.

Usually we write the system of equations as an augmented matrix and then perform the row operations as follows:

$$
\begin{aligned}
& x+2 y=5 \\
& 2 x-y=0
\end{aligned}
$$

$$
\begin{array}{r}
{\left[\begin{array}{rr|r}
1 & 2 & 5 \\
2 & -1 & 0
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}
1 & 2 & 5 \\
0 & -5 & -10
\end{array}\right]} \\
\xrightarrow{-\frac{1}{5} R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}
1 & 2 & 5 \\
0 & 1 & 2
\end{array}\right]
\end{array}
$$

At this point the matrix is in what we call row echelon form (ref), and it wouldn't be hard to write this result as a system of equations and finish solving for x and y.

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 2 & 5 \\
2 & -1 & 0
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}
1 & 2 & 5 \\
0 & -5 & -10
\end{array}\right] } \\
& \xrightarrow{-\frac{1}{5} R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}
1 & 2 & 5 \\
0 & 1 & 2
\end{array}\right] \\
& x+2 y=5 \\
& y=2
\end{aligned}
$$

However, we're going to take it one step further to reduced row echelon form (rref). This form will have ones on the diagonal and zeros above and below the diagonal. The ref form has zeros only below the diagonal.
$\left[\begin{array}{rr|r}1 & 2 & 5 \\ 2 & -1 & 0\end{array}\right] \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}1 & 2 & 5 \\ 0 & -5 & -10\end{array}\right]$
$\xrightarrow{-\frac{1}{5} R_{2} \rightarrow R_{2}}\left[\begin{array}{ll|l}1 & 2 & 5 \\ 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ll|l}1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$

Now that the system is in rref form, we can immediately see what the solutions are.

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 2 & 5 \\
2 & -1 & 0
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}
1 & 2 & 5 \\
0 & -5 & -10
\end{array}\right]} \\
& \xrightarrow{-\frac{1}{5} R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}
1 & 2 & 5 \\
0 & 1 & 2
\end{array}\right] \xrightarrow{-2 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{rr|r}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right] \\
& x+2 y=5 \\
& 2 x-y=0
\end{aligned}
$$

And that's all there is to it!

$$
\begin{gathered}
{\left[\begin{array}{rr|r}
1 & 2 & 5 \\
2 & -1 & 0
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}
1 & 2 & 5 \\
0 & -5 & -10
\end{array}\right]} \\
\xrightarrow{-\frac{1}{5} R_{2} \rightarrow R_{2}}\left[\begin{array}{ll|r}
1 & 2 & 5 \\
0 & 1 & 2
\end{array}\right] \xrightarrow{-2 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right] \\
x+2 y=5 \\
2 x-y=0
\end{gathered}
$$

