
MEASURES OF VARIATION



In addition to knowing what the center of our data is, we 
also want to know how spread out the data is.  We call
our techniques for this measures of variation.



Below are two sets of numbers.  Both sets have a mean
of 70, but clearly one data set has more variation than the
other.

50, 60, 70, 75, 95

70, 70, 70, 70, 70

70μ =



How can we measure the variation in data sets such as
the one below?

50, 60, 70, 75, 95

70μ =



One way we can do it is very quick, but also not very
reliable in practice.  It’s called the range.  Why is this 
measure of variation almost worthless?

50, 60, 70, 75, 95

range = high - low 95 50 45= − =



Another approach might be to find the difference between
each score and the mean, and then compute the average
difference.  However, the table on the next slide shows us 
that there is a problem with this method.

50, 60, 70, 75, 95

70μ =



Another approach might be to find the difference between
each score and the mean, and then compute the average
difference.  

50, 60, 70, 75, 95

70μ =
x x - μ
50 -20
60 -10
70 0
75 5
95 25



Another approach might be to find the difference between
each score and the mean, and then compute the average
difference.  

50, 60, 70, 75, 95

70μ =

( ) 0x μ− =∑

x x - μ
50 -20
60 -10
70 0
75 5
95 25



The problem is that the negative and the positive differences
completely cancel each other out giving us a sum of zero,
and this will happen every time.  

50, 60, 70, 75, 95

70μ =

( ) 0x μ− =∑

x x - μ
50 -20
60 -10
70 0
75 5
95 25



A way around this problem is to square the difference 
between each score and the mean in order to eliminate
negative numbers.  

50, 60, 70, 75, 95

70μ =
x x - μ (x - μ)^2
50 -20 400
60 -10 100
70 0 0
75 5 25
95 25 625

sum = 1150



Next, we’ll find the average squared difference, and then to
somewhat undo the effect of squaring, we’ll take the square
root of the whole thing.  

50, 60, 70, 75, 95

70μ =
x x - μ (x - μ)^2
50 -20 400
60 -10 100
70 0 0
75 5 25
95 25 625

sum = 1150



This particular method of measuring variation is called 
the standard deviation.  

2( )
standard deviation

x
n
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= ∑



However, if we are finding the standard deviation of a 
sample, then we divide by n-1 instead of n.  This results
in a better estimate of the population standard deviation.
However, the reason why is very technical.  

2
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Both of these calculations are done automatically for us
by our TI calculator.  Enter your data into List 1, and go
to Stats Calc.
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≈



The square of the standard deviation is called the
variance.  

2
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Now for some algebra magic.
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Take the square root and we get what we call the raw score
formula for the population standard deviation.  
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And, of course, the raw score formula for the sample
standard deviation is very similar.
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At this point, we should now see if we can determine
how to calculate variance and standard deviation for
a probability distribution.  On the one hand, we know 
that variance is defined by the formula below.

2
2 ( )x

n
μ

σ
−

= ∑



This formula basically computes the average squared
deviation from the mean.  But on the other hand, if the
formula in blue below gives the average value for the
distribution, then the modified one in red should give
the average squared deviation, i.e. the variance.
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[ ]( )E x P x= ⋅∑ 2 2( ) ( )x P xσ μ⎡ ⎤= − ⋅⎣ ⎦∑



Now we just need to do a little algebra to get this in a 
better form for computations.

[ ]
[ ] [ ]

2 2 2

2 2

2 2

2 2

2 2 2

2

2 2 2

2 2

( ) ( ) ( 2 ) ( )

( ) 2 ( ) ( )

( ) 2 ( ) ( )

( ) 2 ( ) ( )

( ) 2

( )

(

) (

) 2

x P x x x u P x

x P x x P x P x

x P x x P x P x

x P

x P x x P

x x P x P x

x P x x P

x

x

μ μ

μ μ

μ μ

μ μ

μ μ μ μ μ

σ

μ

⎡ ⎤ ⎡ ⎤= − ⋅ = − + ⋅⎣ ⎦ ⎣ ⎦
⎡ ⎤= − +⎣ ⎦
⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦
⎡ ⎤= − ⋅ +⎣ ⎦
⎡ ⎤ ⎡ ⎤= − ⋅ + = − +

⎡ ⎤ ⎡ ⎤= ⋅ − = ⋅ −⎣ ⎦

⎣ ⎦ ⎣ ⎦

⎣ ⎦

∑ ∑
∑
∑ ∑ ∑

∑

∑ ∑
∑ ∑

∑

∑

[ ]( )2
( )x P x⋅∑



Now lets give it a try using our probability distribution for 
the coin flipping experiment.

x  = number of heads P(x) x*P(x) x^2 x^2*P(x)
0 0.125 0 0 0
1 0.375 0.375 1 0.375
2 0.375 0.750 4 1.5
3 0.125 0.375 9 1.125

1.5 3

[ ]( ) 1.5x P xμ = ⋅ =∑
2 2( ) .75 .8660254038x P xσ μ⎡ ⎤= ⋅ − = ≈⎣ ⎦∑



Of course, there is one other way to do this which now
should seem very convenient.

[ ]( ) 1.5x P xμ = ⋅ =∑
2 2( ) .75 .8660254038x P xσ μ⎡ ⎤= ⋅ − = ≈⎣ ⎦∑



The standard deviation of a binomial distribution is a 
simple formula, but we will give it without proof.

5 .25 .75 .96825

npqσ

⋅ ⋅ ≈

=

(5)(.25) 1.25
npμ

=
=



And of course, this can also be done just using the
calculator.



An interesting result is Chebyshev’s Theorem that says
that for any type of distribution of data, the proportion of
that data that lies within k standard deviations of the mean,
for k>1, is at least 1 – 1/k2.

2
1 3,  1 75% of the data (at least) lies within 2 standard deviations of the mean. 

4
2

2
For k = − = =

2
1 8,  1 89% of the data (at least) lies within 3 standard deviations of the mean. 

9
3

3
For k = − = ≈



Often, however, we can do better than Chebyshev’s
Theorem because frequently data has a bell-shaped
distribution known as the normal curve.



In a normal distribution, 68% of the data is within 1
standard deviation of the mean, 95% is within 2 standard
deviations, and 99.7% is within 3 standard deviations of
the mean.


