DIVERGENCE THEOREM IN THREE DIMENSIONS - ANSWERS

In each problem below you are given a volume V bounded by a surface S along with a vector field F. If N is an outward pointing unit normal vector, then the outward flux across the surface created by the vector field F is, by the Divergence (Gauss') Theorem, equal to $\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \operatorname{div} \vec{F} d V=\iiint_{V} \nabla \cdot F d V$. Evaluate this integral for each problem below
V is the solid ball with surface S defned by $x^{2}+y^{2}+z^{2}=1$.
$F=x \hat{i}+y \hat{j}+z \hat{k}$
$\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \nabla \cdot F d V=\iiint_{V}(1+1+1) d V=3 \iiint_{V} d V=3 \cdot \frac{4 \pi}{3}=4 \pi$
V is the cube defned by $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$, and S is the surface of the cube.
2.

$$
F=x^{2} \hat{i}+y \hat{j}+z \hat{k}
$$

$$
\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \nabla \cdot F d V=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(2 x+2) d x d y d z=\int_{0}^{1} \int_{0}^{1} x^{2}+\left.2 x\right|_{0} ^{1} d y d z
$$

$$
=\int_{0}^{1} \int_{0}^{1} 3 d y d x=\left.\int_{0}^{1} 3 y\right|_{0} ^{1} d z=\int_{0}^{1} 3 d z=\left.3 z\right|_{0} ^{1}=3
$$

V is the cylinder defned by $-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}, 0 \leq z \leq 4$,
3. (bounded below by $z=0$ and above by $z=4$), and S is the surface of the cylinder.

$$
\begin{aligned}
& F=y \hat{i}-x \hat{j} \\
& \iint_{S} \vec{F} \cdot N d S=\iiint_{V} \nabla \cdot F d V=\iiint_{V} 0 d V=0
\end{aligned}
$$

V is the solid bounded by the $x y$-plane and the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$,
4. and S is the surface of V.
$F=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$
$\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \nabla \cdot F d V=\iiint_{V}\left(3 x^{2}+3 y^{2}+3 z^{2}\right) d V$
$=\iiint_{V} 3\left(x^{2}+y^{2}+z^{2}\right) d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2}\left(3 \rho^{2}\right) \cdot \rho^{2} \sin \varphi d \rho d \varphi d \theta$
$=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2} 3 \rho^{4} \sin \varphi d \rho d \varphi d \theta=\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \frac{3 \rho^{5}}{5} \sin \varphi\right|_{0} ^{2} d \varphi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \frac{96}{5} \sin \varphi d \varphi d \theta$
$=\int_{0}^{2 \pi}-\left.\frac{96}{5} \cos \varphi\right|_{0} ^{\pi / 2} d \theta=\int_{0}^{2 \pi} \frac{96}{5} d \theta=\left.\frac{96 \theta}{2}\right|_{0} ^{2 \pi}=\frac{192 \pi}{5}$
V is the solid bounded by the portion in the first octant of the cylinder (including top and bottom) defined by $x^{2}+y^{2}=1$ as z varies from 0 to 1 , and S is the surface of V.
$F=x^{2} \hat{i}$
$\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \nabla \cdot F d V=\iiint_{V} 2 x d V$
$=\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{1} 2 r \cos \theta \cdot r d z d r d \theta=\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{1} 2 r^{2} \cos \theta d z d r d \theta$
$=\left.\int_{0}^{\pi / 2} \int_{0}^{1} 2 r^{2} \cos \theta \cdot z\right|_{0} ^{1} d r d \theta=\int_{0}^{\pi / 2} \int_{0}^{1} 2 r^{2} \cos \theta d r d \theta$
$=\left.\int_{0}^{\pi / 2} \frac{2 r^{3}}{3} \cos \theta\right|_{0} ^{1} d \theta=\int_{0}^{\pi / 2} \frac{2}{3} \cos \theta d \theta=\left.\frac{2}{3} \sin \theta\right|_{0} ^{\pi / 2}=\frac{2}{3}$

