DIVERGENCE THEOREM IN THREE DIMENSIONS - ANSWERS

In each problem below you are given a volume V bounded by a surface S along with a
vector field F. If N is an outward pointing unit normal vector, then the outward flux
across the surface created by the vector field F is, by the Divergence (Gauss’) Theorem,

equal to J'L FeNdS = ”J'v divFdV = J..Uv V.FdV . Evaluate this integral for each problem
below

V is the solid ball with surface S defned by x* + y? + z? =1.
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V is the cube defned by 0<x<1,0<y<1,0<z<1, and S is the surface of the cube.
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V is the cylinder defned by —1<x<1—-+1-x? <y<+1-x?,0<z<4,
3. (bounded below by z =0 and above by z = 4),and S is the surface of the cylinder.
F=yi-x]
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V is the solid bounded by the xy-plane and the hemisphere z = /4 — x* — y?,
and S is the surface of V.
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V is the solid bounded by the portion in the first octant of the

cylinder (including top and bottom) defined by x*+y?=1 as z varies from 0 to 1,
and S is the surface of V.
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