DIVERGENCE THEOREM IN THREE DIMENSIONS

In each problem below you are given a volume V bounded by a surface S along with a vector field F. If N is an outward pointing unit normal vector, then the outward flux across the surface created by the vector field F is, by the Divergence (Gauss') Theorem, equal to $\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \operatorname{div} \vec{F} d V=\iiint_{V} \nabla \cdot F d V$. Evaluate this integral for each problem below
V is the solid ball with surface S defned by $x^{2}+y^{2}+z^{2}=1$.
$F=x \hat{i}+y \hat{j}+z \hat{k}$
V is the cube defned by $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$, and S is the surface of the cube.
2. $F=x^{2} \hat{i}+y \hat{j}+z \hat{k}$
V is the cylinder defned by $-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}, 0 \leq z \leq 4$,
3. (bounded below by $z=0$ and above by $z=4$), and S is the surface of the cylinder.
$F=y \hat{i}-x \hat{j}$
V is the solid bounded by the $x y$-plane and the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$,
4. and S is the surface of V.
$F=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$
V is the solid bounded by the portion in the first octant of the
cylinder (including top and bottom) defined by $x^{2}+y^{2}=1$ as z varies from 0 to 1 , and S is the surface of V.
$F=x^{2} \hat{i}$

