
STOKES’ THEOREM IN THREE DIMENSIONS 
 

In each problem below you are given a surface S, defined by ( , )z f x y= , over a region R, 
defined by the given limits on x and y.  Let  be the boundary of the region R, oriented 
counterclockwise, and let C be the corresponding bounding curve on the surface S, also 
oriented counterclockwise (Except for problem 4. On problem 4, let your bounding 
curves be oriented clockwise.).  Then if F is a vector field and N is the upward pointing 
unit normal vector for the surface S, use the higher dimensional version of Stokes’ 
Theorem, 
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F dr curl F N dS=∫ ∫∫i i , to measure the circulation around the curve C that is 

caused by the vector field F.  
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(NOTE: On this problem, let  and C be oriented clockwise.  This means that your 
unit normal N will be pointing downward instead of upward.) 
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(HINT: Use a simpler surface with the same bounding curve.) 
 

6. Let 2 2 2 ˆˆ ˆ( 6 6 ) ( 3 )F y y i x z j x= − + + − − k , and use Stokes’ Theorem to show that the 
work done by F along any simple closed curve contained in the plane 2 1x y z+ + =  is 
equal to zero. 


