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CHAPTER 11   

GREEN’S THEOREM, STOKES’ THEOREM, AND THE DIVERGENCE 

THEOREM 

 

We’ve already seen one higher dimensional version of the Fundamental Theorem of 

Calculus, namely the Fundamental Theorem of Line Integrals.  Now it’s time for 

another generalization of the FTC, Green’s Theorem.  Hold on to your hats.  This 

one’s a biggie! 

 

Definition:  A curve C is closed if its initial point coincides with its terminal point.  A 

closed curve C is simple if it doesn’t cross or intersect itself except at its initial and 

terminal points. 

 

Green’s Theorem:  Let C be a smooth, simple closed curve that is oriented 

counterclockwise in the xy-plane, let R be the region bounded by C and let 

ˆ ˆ( , ) ( , ) ( , )F x y P x y i Q x y j= +  be a vector field.  If P and Q have continuous partial 

derivatives on an open region that contains R, then, 

C R

Q PP dx Q dy dA
x y

⎛ ⎞∂ ∂
+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫  
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Proof:  We’ll do just a special case.  Thus, suppose our counterclockwise oriented 

curve C and region R look something like the following: 

 

 

 

 

 

 

 

 

In this case, we can break the curve into a top part and a bottom part over an interval 

on the x-axis from a to b, and we can denote the top part by the function 1( )g x  and 

the bottom part by 2 ( )g x .  Or, we could just as easily portray x as varying from 2 ( )h y  

to 1( )h y  as y varies from c to d. 

 

 

 

 

 

 

 

1( )g x

2 ( )g x

a x b≤ ≤

1( )g x

2 ( )g x

a x b≤ ≤

1( )g x

2 ( )g x

a x b≤ ≤

1( )h y2 ( )h y

c y d≤ ≤

1( )h y2 ( )h y

c y d≤ ≤
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Now let’s begin.  Suppose the curve below is oriented in the counterclockwise 

direction and is parametrized by x.  Suppose also that the top part of our curve 

corresponds to the function 1( )g x  and the bottom part to 2 ( )g x  as indicated in the 

diagram below.   

 

 

 

 

 

 

 

 

Then, 

2 1

2 1 2 1

( , ( )) ( , ( ))

( , ( )) ( , ( )) ( , ( )) ( , ( ))

b a

C
a b

b b b

a a a

P dx P x g x dx P x g x dx

P x g x dx P x g x dx P x g x P x g x dx

= +

= − = −

∫ ∫ ∫

∫ ∫ ∫
 

 

Notice that our integral of 1( , ( ))P x g x  goes from b to a since we are traversing the 

curve in the counterclockwise direction.  Also, note the following, 

1( )g x

2 ( )g x

a x b≤ ≤

1( )g x

2 ( )g x

a x b≤ ≤

1( )g x

2 ( )g x

a x b≤ ≤
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1

2

( )

1 2
( )

2 1

( , ( )) ( , ( ))

( , ( )) ( , ( ))

g xb b

R
a g x a

b

C
a

P PdA dydx P x g x P x g x dx
y y

P x g x P x g x dx P dx

∂ ∂
− = − = − −

∂ ∂

= − =

∫∫ ∫ ∫ ∫

∫ ∫
 

 

Therefore, 
C R

PP dx dA
y

∂
= −

∂∫ ∫∫ . 

 

In a similar manner, with respect to the diagram below, we can assert the following, 

 

 

 

 

 

 

 

 

1

2

( )

1 2
( )

1 2

( ( ), ) ( ( ), )

( ( ), ) ( ( ), )

h xd d

R
c h x c

d c

C
c d

Q QdA dxdy Q h y y Q h y y dy
x x

Q h y y dy Q h y y dy Q dy

∂ ∂
= = −

∂ ∂

= + =

∫∫ ∫ ∫ ∫

∫ ∫ ∫
 

 

1( )h y2 ( )h y

c y d≤ ≤

1( )h y2 ( )h y

c y d≤ ≤
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Therefore, 
C R

QQ dy dA
x

∂
=

∂∫ ∫∫ , and thus, 
C R

Q PP dx Q dy dA
x y

⎛ ⎞∂ ∂
+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ .   ■ 

 

Here is the really remarkable thing that Green’s Theorem is saying.  We have a region 

R that is bounded by a curve C, and Green’s Theorem is telling us the value of the 

double integral of R depends entirely upon what happens on the boundary curve C.  

This is exactly what is going on in the Fundamental Theorem of Calculus and the 

Fundamental Theorem of Line Integrals.  The only difference is that in the earlier 

theorems we dealt with a line instead of a region, and the boundary of the line is 

represented by its endpoints instead of a curve.  Except for the change in dimension, 

the results are analogous.  This is also something that we continue to see as we move 

higher up into theoretical mathematics.  Quite often it’s what happens on the 

boundary that determines things.  However, in one respect, this should not surprise 

us.  After all, aren’t most things in life defined by their boundary?  On physical plane, 

for example, the boundary of my body defines where I end and the rest of the world 

begins.  Boundaries create the distinctions that result in individual existence.  Thus, in 

a larger sense, these theorems are not so surprising. 

 

Now it’s time for an example! 
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Example 1:  Evaluate 4

C
x dx xy dy+∫  where C is the positively oriented triangle 

defined by the line segments connecting (0,0)  to (1,0) , (1,0)  to (0,1) , and (0,1)  to 

(0,0) . 

 

 

 

 

 

 

 

Solution:  By changing the line integral along C into a double integral over R, the 

problem is immensely simplified. 

1 1
4

0 0
1 11 12 2 3

0 0 00

( 0)

(1 ) (1 ) 1
2 2 2 3 6

x

C C R

x

Q Px dx xy dy Pdx Qdy dA y dydx
x y

y x xdx dx

−

−

⎛ ⎞∂ ∂
+ = + = − = −⎜ ⎟∂ ∂⎝ ⎠

− − −
= = = =

⋅

∫ ∫ ∫∫ ∫ ∫

∫ ∫
 

 

Now let’s look at another problem which can be greatly simplified by applying 

Green’s Theorem. 

 

 

( )0,0 ( )1,0

( )0,1

( )0,0 ( )1,0

( )0,1

( )0,0 ( )1,0

( )0,1
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Example 2:  Evaluate sin 4(3 ) (7 1)x

C
y e dx x y dy− + + +∫  where C is the circle 

2 2 9x y+ = . 

 

Solution:  Again, Green’s Theorem makes this problem much easier. 

sin 4

4 sin

32 3 2
2

0 0 0 0
22

0 0

(3 ) (7 1)

(7 1) (3 )

(7 3) 4 2

18 18 36

x

C C R

x

R

R

Q Py e dx x y dy Pdx Qdy dA
x y

x y y e dA
x y

dA r drd r d

d

π π

ππ

θ θ

θ θ π

⎛ ⎞∂ ∂
− + + + = + = −⎜ ⎟∂ ∂⎝ ⎠
⎡ ⎤∂ + + ∂ −⎢ ⎥= −

∂ ∂⎢ ⎥⎣ ⎦

= − = =

= = =

∫ ∫ ∫∫

∫∫

∫∫ ∫ ∫ ∫

∫

 

 

Now let’s look at a couple of generalizations of Green’s Theorem, namely Stokes’ 

Theorem and the Divergence Theorem.  In two dimensions, it’s very easy to see that 

these are both simply different ways of looking at Green’s Theorem, and so we’ll 

start with the two dimensional versions of these results.  Also, we’ll finally see in 

these theorems why the definitions that we gave for curl and divergence wind up 

telling us something about the circulation and flux of a vector field along or across a 

curved path. 
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Let’s begin by supposing that we have a vector field ˆ ˆF Pi Qj= +  and that 

ˆ ˆ( ) ( ) ( )r t x t i y t j= +  is a smooth parametrization for a curve C.  Then Green’s Theorem 

and previous results tells us that, 

Work 
C C R

Q PF dr P dx Q dy dA
x y

⎛ ⎞∂ ∂
= = + = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫ ∫∫i  

 

However, recall that this same integral is also a measure of the circulation around he 

curve caused by the vector field.  Additionally, notice that the expression Q P
x y

∂ ∂
−

∂ ∂
 is 

how we defined the scalar component of the curl for a two dimensional vector field.  

Thus, 

( ) ( )

Circulation 

ˆ ˆ

C C C R

R R

Q PF T ds F dr P dx Q dy dA
x y

curl F k dA F k dA

⎛ ⎞∂ ∂
= = = + = −⎜ ⎟∂ ∂⎝ ⎠

= = ∇×

∫ ∫ ∫ ∫∫

∫∫ ∫∫

i i

i i
 

 

This last result that ( ) ˆCirculation 
C R

F dr curl F k dA= =∫ ∫∫i i  is known as the two 

dimensional version of Stoke’s Theorem. 

 

To develop the two dimensional version of the Divergence Theorem, recall that if  
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ˆ ˆ( ) ( ) ( )r t x t i y t j= +  with a t b≤ ≤  is parametrization for C, then the unit tangent is 

defined as ( ) ( ) ( )ˆ ˆ( )
( ) ( ) ( )

r t x t y tT t i j
r t r t r t
′ ′ ′

= = +
′ ′ ′

, and the unit normal is 

( ) ( )ˆ ˆ( )
( ) ( )

y t x tN t i j
r t r t
′ ′

= −
′ ′

. 

 

Now consider the diagram below. 

 

 

 

 

 

What we want to think about is how a force F  might push material across this curve.  

In this case, think of F  as a velocity vector.  Additionally, if our change in arc length, 

sΔ , is small, then we can treat our velocity vector as if it were constant over this 

interval.  In this case, the amount of material or flux across this boundary in a unit of 

time is going to be approximately equivalent to the area of the parallelogram defined 

by the sΔ  and the vector F .  To get the height of this parallelogram, we just take the 

dot product of F  with the unit normal vector N , and then we multiply this result by 

the base sΔ .  In other words, ( )flux across s area F N sΔ = = Δi .  To now get the total 

F

sΔ

N
F

sΔ

N
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flux across the curve C, we just sum up all the individual fluxes and take a limit as sΔ  

goes to zero.  In other words, 

( ) ( )
0

lim
Cs

Flux F N s F N ds
Δ →

= Δ =∑ ∫i i  

 

Now, as you might suspect, there are some other ways in which we can write this 

integral, and it’s going to be a direct result of applying Green’s Theorem. 

( )

( )

( )

( )

Flux 

( ) ( )ˆ ˆ ˆ ( )
( ) ( )

ˆ ˆ ˆ

b

C a

b

a

b b

a a

C C R

R R

dsF N ds F N dt
dt

y t x tPi Qj i r t dt
r t r t

dy dx dy dxPi Qj i dt P Q dt
dt dt dt dt

P QPdy Qdx Qdx Pdy dA
x y

div F dA F dA

= =

⎛ ⎞′ ′
′= + −⎜ ⎟⎜ ⎟′ ′⎝ ⎠

⎛ ⎞ ⎛ ⎞= + − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂
= − = − + = +⎜ ⎟∂ ∂⎝ ⎠

= = ∇

∫ ∫

∫

∫ ∫

∫ ∫ ∫∫

∫∫ ∫∫

i i

i

i

i

 

 

If you look at this proof closely, you’ll see that it uses a lot of tools that we’ve 

developed throughout this book, and you’ll also see at the very end why our 

definition of the divergence does indeed tell us something about flux across a 

boundary. 

 

The Divergence Theorem is also known as Gauss’ Theorem, and below we have a 

summary of our results for the two dimensional case. 
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If ˆ ˆF Pi Qj= +  is a vector field and if C is a simple closed, counterclockwise oriented 

path parametrized by ˆ ˆ( ) ( ) ( )r t x t i y t j= + , and if T is the unit tangent vector and N is 

the unit normal vector, then: 

 

 WorkGREEN'S THEOREM:  
C C R

Q PF dr P dx Q dy dA
x y

⎛ ⎞∂ ∂
= = + = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫ ∫∫i  

 

( ) ( )

 Circulation 

ˆ ˆ

STOKES' THEOREM:
C C

C R R R

F T ds F dr

Q PP dx Q dy dA curl F k dA F k dA
x y

= =

⎛ ⎞∂ ∂
= + = − = = ∇×⎜ ⎟∂ ∂⎝ ⎠

∫ ∫

∫ ∫∫ ∫∫ ∫∫

i i

i i
 

 

( )

 Flux GAUSS' THEOREM:
C C C

R R R

F N ds Pdy Qdx Qdx Pdy

P Q dA div F dA F dA
x y

= == − = − +

⎛ ⎞∂ ∂
= + = = ∇⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫

∫∫ ∫∫ ∫∫

i

i
 

 

Let’s now look at an example or two before moving on. 
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Example 3:  Find the circulation and flux of ˆ ˆF xi y j= +  with regard to the unit circle 

below.  Assume a positive (counterclockwise) orientation for the curve. 

 

 

Solution:  Our initial suspicion should be that the circulation is zero and that the flux 

is positive since our vectors are pointing away from the center of the circle.  

Calculations will confirm this. 

( )

Circulation 

0 0 0

C C R R

R

Q P y xF dr Pdx Qdy dA dA
x y x y

dA

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= = + = − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= − =

∫ ∫ ∫∫ ∫∫

∫∫

i
 

 

( )

( )

Flux 1 1

2 2 2

C R R R

R

P Q x yF N ds dA dA dA
x y x y

dA area of the circle π

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= = + = + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= = ⋅ =

∫ ∫∫ ∫∫ ∫∫

∫∫

i
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Example 4:  Find the circulation and flux of ˆ ˆF yi x j= −  with regard to the unit circle 

below.  Assume a positive (counterclockwise) orientation for the curve. 

 

 

Solution:  This time our suspicion should be that the circulation is negative since the 

vectors suggest a rotation in the clockwise or negative direction, and that the flux is 

zero. 

( ) ( )

( )Circulation 

1 1 2 2 2

C C R R

R R

Q P x yF dr Pdx Qdy dA dA
x y x y

dA dA area of the circle π

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ − ∂
= = + = − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= − − = − = − ⋅ = −

∫ ∫ ∫∫ ∫∫

∫∫ ∫∫

i
 

 

( )

( )Flux 

0 0 0

C R R

R

P Q y xF N ds dA dA
x y x y

dA

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ −
= = + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= + =

∫ ∫∫ ∫∫

∫∫

i
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Now let’s look at Stokes’ Theorem in three dimensions.  We’ll basically do just the 

case that is easiest to understand.  In particular, we’ll assume that we have a smooth 

surface ( , )z f x y=  that is bounded by a curve C, and we’ll assume that the domain of 

( , )z f x y=  is a nice, simply connected region R in the xy-plane bounded by a curve 

RC  that, of course, gets mapped onto the curve C by our function ( , )z f x y= .  We’ll 

also assume that ˆˆ ˆ( , , ) ( , , ) ( , , ) ( , , )F x y z P x y z i Q x y z j R x y z k= + +  is a vector field that has 

continuous partial derivatives on an open region in 3  (three dimensional coordinate 

space) that contains the surface S.  As usual, continuity prevents anything really 

unusual, bad, or unexpected from happening, and given these conditions, we can 

succinctly state our theorem as, 

 

Stokes’ Theorem:  ( )
C S

F dr curl F N dS=∫ ∫∫i i . 

 

Proof:  Let’s talk first about the vector N.  What the heck is that?  We’ll as you might 

suspect, N is a unit normal vector, but in this case we’re talking about a vector being 

normal or perpendicular to the surface ( , )z f x y= .  So how do we find our unit 

normal?  Again, we already know one way to do it.  Remember that we can write 

( , )z f x y=  as 0 ( , )f x y z= − , and we can consider the surface S to be a level surface of 

the function ( , , ) ( , )g x y z f x y z= − .  Consequently, as you surely recall, the gradient of 
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g is ˆ ˆˆ ˆ ˆ ˆg g g f fg i j k i j k
x y z x y
∂ ∂ ∂ ∂ ∂

∇ = + + = + −
∂ ∂ ∂ ∂ ∂

, and g∇  is normal to the surface at any 

surface point we wish to evaluate it at.  Now realize this.  If g∇  is perpendicular to 

the surface, then g−∇  is also perpendicular to the surface.  Right?  It just points in the 

opposite direction as g∇ .  Also, g−∇  is the vector we are going to use because since 

ˆˆ ˆf fg i j k
x y
∂ ∂

−∇ = − − +
∂ ∂

 has a positive k̂  component, it will point upward with respect 

to our surface, and that is going to be much nicer.  Now, how do we get a unit normal 

vector out of his?  Simple!  We just divide g−∇  by its length.  Thus, 

22

ˆˆ ˆ

1

f fi j k
g x yN
g f f

x y

∂ ∂
− − +

−∇ ∂ ∂= =
−∇ ⎛ ⎞∂ ∂⎛ ⎞ + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

. 

 

Now recall that when we did a surface integral a long time ago as an example of a 

double integral, we saw that 
22

1f fdS dA
x y

⎛ ⎞∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
.  Consequently, 

( )
22

22

ˆˆ ˆ
1

1

ˆˆ ˆ

S R

R

f fi j k
f fx ycurl F N dS curl F dA
x yf f

x y

f fcurl F i j k dA
x y

⎡ ⎤
∂ ∂⎢ ⎥− − +⎢ ⎥ ⎛ ⎞∂ ∂∂ ∂ ⎛ ⎞= ⋅ + +⎢ ⎥ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎛ ⎞∂ ∂⎛ ⎞ + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂
= − − +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

∫∫ ∫∫

∫∫

i i

i
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Now we’re making progress!  The next step is to remember that 

ˆˆ ˆ

ˆˆ ˆ

i j k
R Q R P Q Pcurl F F i j k

x y z y z x z x y
P Q R

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= ∇× = = − − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
.  Thus, 

( ) ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

S R

R

f fCurl F N dS curl F i j k dA
x y

R Q R P Q P f fi j k i j k dA
y z x z x y x y

R f Q f R f P f Q P
y x z x x y z y x y

⎡ ⎤⎛ ⎞∂ ∂
= − − +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − − − + − − − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∫∫ ∫∫

∫∫

i i

i

R

R

dA

z R Q z z R P z Q P dA
x y z x y x z y x y

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∫∫

∫∫

 

 

Also, 
C C

F dr Pdx Qdy Rdz= + +∫ ∫i .  So, all we have to do is to show that 

C R

z R Q z z R P z Q PPdx Qdy Rdz dA
x y z x y x z y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠∫ ∫∫ .  Is that too 

much to ask?  Certainly not!  Let’s begin. 

 

There are two things we need now.  First, let’s suppose that our curve RC  is nicely 

parametrized by ( )x x t=  and ( )y y t=  for a t b≤ ≤ .  Then this also provides us with a 

parametrization for C if we let ( )( ) ( ), ( )z z t f x t y t= = .  Second, we’re going to have to 

use some unusual versions of the chain rule, and so let’s look at the instructive 

diagrams below.  For the function P, our diagram is, 
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Hence, if we want the derivative of P with respect to y, then we multiply along all the 

branches that terminate in y and add ‘em up.  This gives us, 

 

derivative of  with respect to P P zP y
y z y

∂ ∂ ∂
= +
∂ ∂ ∂

. 

 

If you’re really sharp, you might notice that there is something a little funny about 

what I just wrote.  In particular, I wrote out the phrase “derivative of P with respect to 

y” instead of using the symbolic notation P
y

∂
∂

.  However, if I had used this notation, 

then I would have gotten the equation 

P P P z
y y z y

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
 

P

x

y

z

x

y

P
x

∂
∂

P
y

∂
∂

P
z

∂
∂

z
x
∂
∂

z
y
∂
∂

P

x

y

z

x

y

P
x

∂
∂

P
y

∂
∂

P
z

∂
∂

z
x
∂
∂

z
y
∂
∂
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which would imply that  

0 P z
z y

∂ ∂
=
∂ ∂

, 

and that is not at all what we want!  So what’s going on here?  Well, basically, our 

notation is failing us a bit, so let’s make up an example and follow it through.  

Suppose we have, 

3 2

4

&P y z

z y

= +

=
 

Then what we are really trying to say when we write 

derivative of  with respect to P P zP y
y z y

∂ ∂ ∂
= +
∂ ∂ ∂

 

is, 

derivative of  with respect to 
derivative of the part that is explicitly written in terms of 

derivative of the part that is explicity written in terms of 
derivative of  with respect to 

P y
y

z
z y

=
+

×

 

Thus, to find P
y

∂
∂

 in this example, we first find the derivative of 3y  with respect to y, 

and then we apply the chain rule to 2z .  The end result is, 

3 2 4
2 2 4 3 2 7( ) ( ) ( )3 2 3 2 4 3 8P y z z yy z y y y y y

y y z y y
∂ ∂ ∂ ∂ ∂

= + = + ⋅ = + ⋅ = +
∂ ∂ ∂ ∂ ∂

 

Make sense?  Good!  Now let’s continue with the proof. 
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For our function Q, the diagram is, 

 

 

 

 

 

 

 

And, 

 

derivative of  with respect to Q Q zQ x
x z x

∂ ∂ ∂
= +
∂ ∂ ∂

. 

 

Finally, the diagram for R is, 

 

 

 

 

 

 

R

x

y

z

x

y

R
x

∂
∂

R
y

∂
∂

R
z

∂
∂

z
x
∂
∂

z
y
∂
∂

R

x

y

z

x

y

R
x

∂
∂

R
y

∂
∂

R
z

∂
∂

z
x
∂
∂

z
y
∂
∂

Q

x

y

z

x

y

Q
x

∂
∂

Q
y

∂
∂

Q
z

∂
∂

z
x
∂
∂

z
y
∂
∂

Q

x

y

z

x

y

Q
x

∂
∂

Q
y

∂
∂

Q
z

∂
∂

z
x
∂
∂

z
y
∂
∂
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Furthermore, 

 

derivative of  with respect to R R zR x
x z x

∂ ∂ ∂
= +
∂ ∂ ∂

 

 

And, 

 

derivative of  with respect to R R zR y
y z y

∂ ∂ ∂
= +
∂ ∂ ∂

 

 

Now we’re ready to rock-n-roll!  Just make the above substitutions into the 

calculations below when the time comes. 
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b

C C
a

b b

a a

b

a

dx dy dzF dr Pdx Qdy Rdz P Q R dt
dt dt dt

dx dy z dx z dy dx dy z dx z dyP Q R dt P Q R R dt
dt dt x dt y dt dt dt x dt y dt

z dx z dy zP R Q R dt P R
x dt y dt x

⎛ ⎞= + + = + +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= + + + = + + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛= + + + = +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜∂ ∂ ∂⎝ ⎠ ⎝⎝ ⎠⎣ ⎦

∫ ∫ ∫

∫ ∫

∫

i

2

2

RC

R

zdx Q R dy
y

z zQ R P R
y x dA

x y

Q Q z z z R R zR
x z x x y y x z x

P P z z z R R zR
y z y y x x y z y

⎛ ⎞∂⎞ + +⎜ ⎟⎟ ∂⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞∂ + ∂ +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥= −
⎢ ⎥∂ ∂
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤+ + + +⎢ ⎜ ⎟⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎝ ⎠=
⎛ ⎞⎛ ⎞ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + − + +⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎝ ⎠⎣

∫

∫∫

2

2

R

R

R

dA

Q Q z z z R z R z P P zR
x z x x y y x y z x y z y

dA
z z R z R zR

y x x y x z y

z R Q z z R P z Q P dA
x y z x y x z y x y

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + − −⎜ ⎟

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟= ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟− − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∫∫

∫∫

∫∫

 

( )
S

curl F N dS= ∫∫ i      ■ 
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Wow!  What a great proof!  I’m really stoked!  Now let’s look at a few pictures in 

order to get another perspective on what Stokes’ Theorem is saying.   

 

 

 

 

 

 

 

 

 

Above is a picture of a surface S that is bounded by a curve C.  Right below C there is 

a corresponding curve RC  in the xy-plane that bounds a region R.  Then the proof of 

Stokes’ Theorem essentially shows us that the circulation integral around C is 

equivalent to a double integral of the curl over S which is equivalent to a double 

integral of the region R directly below S which is equivalent to a circulation integral 

around the curve RC  in the xy-plane.  The bottom line of all these conclusions, 

though, is simply that the double integral of our curl over S is equivalent to the 

circulation integral around C.  This is also somewhat easy to intuit from the following 

diagram. 

 

C

RC

C

RC
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Suppose we are trying to do a line integral over all the oriented paths represented by 

the blue arrows.  Then the net result is going to be that some of these integrals are 

going to cancel each other out because for one integral our blue arrow will be 

pointing in one direction and for another integral our arrow will be pointing in the 

opposite direction.  In fact the only paths that don’t cancel are those represented by 

the red arrows.  A similar thing happens with surfaces in three dimensions.  In the 

graph below, if you imagine doing a line integral in the counterclockwise direction 

around each little polygon that we are using to help depict our surface, then once 

again lots of things will cancel out, and we’ll be left only with a line integral around 

the bounding curve C at the bottom of the surface.  What this is basically showing us 

is that an integral over the surface is approximately equivalent to a sum of integrals 

over the polygons used to depict that surface which is equivalent, by an extended 

version of Green’s Theorem, to a sum of line integrals around the boundaries of those 
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polygons which in turn reduces to a single line integral around the curve that bounds 

our surface.  Case closed! 

 

 

Notice, too, that the result of Stokes’ Theorem does not depend so much on what our 

surface looks like.  It only depends on the bounding curve.  Thus, for a given vector 

field, the diagram below will give the same result as the one above. 
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Now let’s see if we can do an example.  We’ll let our surface be the top half of a 

sphere of radius 1.  More precisely, let 2 21z x y= − −  and let our vector field be 

ˆˆ ˆF yi xj zk= − + + .  Then the bounding curve C is the unit circle in the xy-plane, and 

we can think of our surface as a level surface for the function 

2 2 1 2( , ) (1 )g f x y z x y z= − + = − − − + .  Furthermore,  

2 2 1 2 2 2 1 2

2 2 2 2

1 1 ˆˆ ˆ(1 ) ( 2 ) (1 ) ( 2 )
2 2

ˆˆ ˆ
1 1

g x y x i x y y j k

x yi j k
x y x y

− −∇ = − − − − − − − − +

= + +
− − − −

. 

Also,  
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ˆˆ ˆ

ˆ ˆˆ ˆ0 0 (1 1) 2

i j k

F i j k k
x y z
y x z

∂ ∂ ∂
∇× = = − + + =

∂ ∂ ∂
−

. 

 

Thus, by Stokes’ Theorem,  

( ) ( )

2 2 2 2
ˆ ˆˆ ˆ2 2 2

1 1

C S R

R R

F dr curl F N dS F g dA

x yk i j k dA dA
x y x y

π

= = ∇× ∇

⎛ ⎞
⎜ ⎟= + + = =
⎜ ⎟− − − −⎝ ⎠

∫ ∫∫ ∫∫

∫∫ ∫∫

i i i

i
 

 

If we try and do this by evaluating the line integral on the left side more directly, then 

we begin with 
C C

F dr Pdx Qdy Rdz= + +∫ ∫i  where C is the unit circle that may be 

parametrized by, 

cos
sin
0

0 2

x t
y t
z

t π

=
=
=
≤ ≤

    

And, 

 
sin

cos
1

P y t
Q x t
R

= = −
= =
=

  

Additionally, 
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sin

cos

dx t
dt
dy t
dt

= −

=
 

 

Thus, 

( )

2

0
2

0
22 2

2 2

0 0 0

sin ( sin ) (cos )(cos ) 0

sin cos 2

C C

dx dy dzF dr Pdx Qdy Rdz P dt Q dt R dt
dt dt dt

t t t t dt

t t dt dt t

π

π

ππ π

π

= + + = + +

= − − + +

= + = = =

∫ ∫ ∫

∫

∫ ∫

i

 

So there you go.  We get the same answer either way. 

Now let’s take a look at the Divergence Theorem. 

 

Divergence Theorem:  Let V be a solid region bounded by a closed surface S and let 

N be a unit normal vector pointing outward from the solid V.  If ˆ ˆF Pi Qj Rk= + +  is a 

vector field who component functions have continuous partial derivatives throughout 

V, then ( )
S V

F N dS F dV= ∇∫∫ ∫∫∫i i . 
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Proof:  We want to show that 

( )ˆ ˆ
S S V

P Q RF N dS Pi N Qj N Rk N dS dV
x y z

⎛ ⎞∂ ∂ ∂
= + + = + +⎜ ⎟∂ ∂ ∂⎝ ⎠∫∫ ∫∫ ∫∫∫i i i i .  Furthermore, it 

will suffice to show that, 

( )ˆ
S V

PPi N dS dV
x

∂
=

∂∫∫ ∫∫∫i , 

( )ˆ
S V

QQj N dS dV
y

∂
=

∂∫∫ ∫∫∫i , and 

( )ˆ
S V

RRk N dS dV
z

∂
=

∂∫∫ ∫∫∫i  

 

We’ll prove just the last equality, ( )ˆ
S V

RRi N dS dV
z

∂
=

∂∫∫ ∫∫∫i , since the other proofs 

are similar.  Of course, what a professor generally means when he or she says this is, 

1. I’ve never even tried to prove the other cases. 

2. I don’t even know if I can do the other cases. 

3. Oh, please, oh, please, don’t make me try and do the other cases!!! 

 

But, continuing on, let’s suppose our solid has a top surface 2S  defined by 

2 ( , )z f x y= , and a bottom surface 1S  defined by 1( , )z f x y= , and maybe some vertical 

sides.  If we set 2 ( , )g f x y z= − +  and 1 ( , )g f x y z= − , then 2g∇  and 1g∇  will both be 

outward pointing vectors that are perpendicular to our surface S.  We don’t need to 
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really worry about the vertical sides because for any unit normal N at such a side 

point we automatically have ˆ 0Rk N =i .  With this setup we now have, 

 

( ) ( ) ( )
2 1

2 1

2 1

ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( , , ( , )) ( , , ( , ))

( , , ( , )) ( , , ( , ))

S S S

R R

R

Rk N dS Rk N dS Rk N dS

f f f fR x y f x y k i j k dA R x y f x y k i j k dA
x y x y

R x y f x y R x y f x y dA

= +

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
= − − + + + −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

= −

∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫

i i i

i i  

2

1

( , )

( , )

f x y

R V
f x y

R Rdz dA dV
z z

⎡ ⎤∂ ∂⎢ ⎥= =
∂ ∂⎢ ⎥⎣ ⎦

∫∫ ∫ ∫∫∫ .        ■ 

 

And there you go!  Slam dunk!!  The proof is similar for the other parts (so they say), 

and when you add everything together you get ( )
S V

F N dS F dV= ∇∫∫ ∫∫∫i i . 

 

And now it’s time to make an example of this theorem!  We’ll use the same volume 

and vector field we used last time, but this time we’ll use the Divergence Theorem to 

find the flux across the boundary.   So once again, let our surface be the top half of a 

sphere of radius 1, 2 21z x y= − − , and let our vector field be ˆˆ ˆF yi xj zk= − + + .  Then 

the corresponding region R in the xy-plane is the unit circle.  And as before, we can 

think of our surface as a level surface for the function 

2 2 1 2( , ) (1 )g f x y z x y z= − + = − − − + .  Now, using the Divergence Theorem, we have, 
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( ) 2
3S V V

F N dS F dV dV π
= ∇ = =∫∫ ∫∫∫ ∫∫∫i i  

 

If we now try to integrate our surface integral a little more directly, then we get, 

( )
2 2 2 2

2 1
2 2 2 2

0 0
202 0 2 23 2

1 2

0 1 0 01 0

1 1

1 ( ) 1 set 1 , 2

1 1 2 1 2
2 2 3 3 3 3

S R R

R R

xy xyF N dS F g dA z dA
x y x y

z dA x y dA r rdrd u r du rdr

uu dud d d

π

ππ π π

θ

θ πθ θ θ

⎛ ⎞−⎜ ⎟= ∇ = + +
⎜ ⎟− − − −⎝ ⎠

⎡ ⎤= = − + = − = = − = −⎣ ⎦

⎡ ⎤
⎢ ⎥= − = − = = =
⎢ ⎥⎣ ⎦

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫ ∫

∫ ∫ ∫ ∫

i i

 

 

We got the same answer twice, so it must be right.  Adios, for now.  It’s been a 

pleasure! 

 


