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CHAPTER 5   

VECTOR TRANSFORMATIONS 

 

Now that we’ve talked about vectors, they’re going to give us a whole new way to 

look at parametric equations.  This is because we can always associate a position 

vector, a vector whose initial point is at the origin, with the corresponding point that it 

terminates at.  For example, the point ( )2,3  in two dimensions can be described either 

by saying 2x =  and 3y = , or by giving the position vector ˆ ˆ2 3r i j= + .  Now let’s 

apply this to something like a circle of radius 1 with center at the origin. 

 

Recall that we saw previously that a good parametrization for the unit circle is, 

cos
sin

0 2

x t
y t

t π

=
=
≤ ≤

 

We can now write this as a vector-value function as, 

ˆ ˆ( ) cos( ) sin( )
0 2
r t t i t j

t π
= +

≤ ≤
 

and the graph is the same circle we saw before.  Also, if you want a larger circle, just 

multiply ˆ ˆ( ) cos( ) sin( )r t t i t j= +  by whatever you would like the radius to be. 
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If we want to now graph this unit circle in three dimensions, the vector representation 

again tells us how to do it.  All we need to do is set the ˆ-componentk  equal to zero. 

ˆˆ ˆ( ) cos( ) sin( ) 0
0 2
r t t i t j k

t π
= + +

≤ ≤
 

And the end result is a circle in 3-dimensional space. 
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What if we now want our circle in the yz-plane instead of the xy-plane?  No problem!  

Just make your ˆ-componenti  zero and move your cosine and sine functions to the ĵ  

and ˆ-components.k  

ˆˆ ˆ( ) 0 cos( ) sin( )
0 2
r t i t j t k

t π
= + +

≤ ≤
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Now suppose we want to shift this circle 1 unit along the positive y-axis and 1 unit 

along the positive z-axis.  Again, there is no difficulty if we use vectors.  We just need 

to take the vector ˆˆu j k= +  and add it to the vector r . 

ˆˆ ˆ0 (cos( ) 1) (sin( ) 1)
0 2
r u i t j t k

t π
+ = + + + +
≤ ≤
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From these examples you might correctly deduce that to create a circle in any plane, 

all you need are two unit vectors which are perpendicular.  For example, let’s graph 

the unit circle with center at the origin that lies in the plane .y x= −   For our unit 

vectors we could use ˆv k=  and 3 3 2 2ˆ ˆ ˆ ˆcos sin
4 4 2 2

w i j i jπ π
= + = − + .  Our circle, 

written in vector form, will then be, 

2 2 ˆˆ ˆ( ) cos( ) sin( ) sin( ) sin( ) cos( )
2 2

0 2

r t t v t w t i t j t k

t π

= + = − + +

≤ ≤
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I love it when the magic works!  If we now want to shift the whole thing 1 unit in the 

direction of the vector w , then just add the unit vector w  to r . 

2 2 2 2 ˆˆ ˆ( ) sin( ) sin( ) cos( )
2 2 2 2

0 2

r t w t i t j t k

t π

⎛ ⎞ ⎛ ⎞
+ = − − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
≤ ≤
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And again it worked!  Now let’s take something a little more challenging.  Let’s see if 

we can use a vector-valued function to come up with parametric equations for a 

cycloid.  What’s a cycloid?  Well, if you are riding a bicycle in a straight line, and if 

you put a red dot on some particular point on your tire, then the path that red dot 

traces out as you go along is called a cycloid.  Mathematicians thought about cycloids 

a lot a few hundred years ago.  Personally, I don’t care about them at all, but it does 

make for an interesting example.  So let’s suppose we have a circle of radius r with 

center at (0, )r , and let’s also suppose that we’ve marked our circle with a red dot at 

the point (0,0) . 
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We now ask ourselves what path the red dot will trace out as we roll the circle right or 

left.  The path that is traced is what we call a cyloid. 
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Now let’s suppose that we’ve rolled our circle a little to the right.  Then we might get 

a picture like the one below. 

 

What we want to do is figure out the location of the red dot, and it turns out that this 

is not that hard to do if we describe everything in terms of vectors.  To arrive at the 

position of the red dot, all we need to do is add three vectors together. 
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The first vector that we’ll call 1r  starts at the origin and extends horizontally to the 

right until it meets the circle.  If you think of the circle “unwrapping” as it moves 

along, then the length of 1r  is the same as the length of the arc of the circle 

corresponding to the angle θ .  From trigonometry we know that the length of this arc 

is rθ , the product of the radius and the angle.  Because of the direction of movement, 

we set 1
ˆr r iθ= .  The next vector, 2r , points straight up and has length r.  Therefore, 

2
ˆr r j= .  The third vector, which goes from the center of the circle to a point on the 

circle, is a little trickier.  However, imagine moving this vector so that it’s initial point 

is at the origin.  If we do that, then the angle made with the positive x-axis would be 

3
2
π θ− .  Hence, we should define our third vector as, 

θ
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( ) ( ) ( ) ( )

( ) ( )

3
3 3ˆ ˆcos sin
2 2

3 3 3 3ˆ ˆcos cos sin sin sin cos cos sin
2 2 2 2

ˆ ˆsin cos

r r i r j

r i r j

r i r j

π πθ θ

π π π πθ θ θ θ

θ θ

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

= − −

 

Hence, 

( ) ( )1 2 3
ˆ ˆ( ) ( ) ( ) ( ) sin( ) cos( )r r r r r r i r r jθ θ θ θ θ θ θ= + + = − + −  

Thus, the cycloid is defined by the following parametric equations. 

( )
( )

sin

1 cos

x r

y r

θ θ

θ

θ

= −

= −

−∞ < < ∞

 

Is that cool or what!  In our graphs above, we used 1r =  for simplicity.  Nonetheless, 

you can see how thinking terms of vectors greatly simplified the problem. 

 

Up until now we’ve looked only at parametric equations or vector-valued functions of 

a single variable, and the result has always been a curve in space.  However, there’s 

no reason why we can’t expand our explorations to equations involving two variables, 

and when we do so, we’ll generally get surfaces instead of curves.  And actually, 

you’ve already seen parametric equations involving more than one variable.  Just 

think back to the equations we set up for converting from cylindrical and spherical 

coordinates back to rectangular coordinates.  These were each parametric equations 

with two parameters.  In particular, if we want to describe a sphere of radius 2ρ = , 

then our parametric equations are, 
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sin cos 2sin cos
sin sin 2sin sin
cos 2cos

0
0 2

x
y
z

ρ ϕ θ ϕ θ
ρ ϕ θ ϕ θ
ρ ϕ ϕ
ϕ π
θ π

= =
= =
= =
≤ ≤
≤ ≤

 

 

Or course, we could also write this in vector form as, 

( ) ( ) ( ) ( ) ˆˆ ˆ, 2sin cos 2sin sin 2cos
0
0 2

r i j kϕ θ ϕ θ ϕ θ ϕ
ϕ π
θ π

= + +

≤ ≤
≤ ≤

 

And if we graph these equations, then sure enough we get a sphere! 
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As we did previously, if we want to move this sphere to a different location, we just 

need to add the appropriate vector to it.  For example, if we set ˆ2u k= , then 

( ),r uϕ θ +  will shift our sphere 2 units upwards. 

 

Now let’s look at how we can construct a plane using parametric equations with two 

variables.  We’ll do it all from scratch starting with three distinct points ( )6,1,1P = , 

( )2, 3,5Q = − − , and ( )0,4,2R = .  If we plot these points, we get something like the 

following. 
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We can now use parametric equations to draw line segments representing the 

displacement vectors PQ  and PR . 

:
6 8
1 4
1 4

0 1

PQ
x t
y t
z t

t

= −
= −
= +
≤ ≤

  

:
6 6
1 3
1

0 1

PR
x t
y t
z t

t

= −
= +
= +
≤ ≤

 

 

 

 

 

 

 

P

Q

R
P

Q

R
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Remember, too, that if we set 1t = , then we can write these vectors and the location 

of point ( )6,1,1P =  as, 

6,1,1

2, 3,5

0,4,2

r

u

v

=

= − −

=

 

Furthermore, it should be clear from the diagram above that the vectors u  and v  

define a plane, and we can reach any point in this plane by starting at P and adding on 

scalar multiples of u  and v .  In other words, if we let s and t b our parameters, then 

w r s u t v= + ⋅ + ⋅  defines a plane.  If we write this out parametrically, we get: 

6 2
1 3 4
1 5 2

x s
y s t
z s t

s
t

= −
= − +
= + +

−∞ < < ∞
−∞ < < ∞

 

P

Q

R
P

Q

R
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And here’s our plane! 

 

The axes are hidden by our plane, but we can clearly see that it contains our three 

points and the displacement vectors PQ  and PR .  Thus, we now have at least a 

couple of ways to construct a plane using three points.  We can use the vectors PQ  

and PR  to help us set up parametric equations in two variables for the plane, or we 

could get a normal vector by taking the cross product of PQ  and PR , and then 

proceeding as we did before to get an equation in the form 0Ax By Cz D+ + + = . 

 

Another surface worth examining is a donut shaped object called the torus.  I, 

however, like to just refer to it as the bagel.  Here’s a picture of the object we’re 

going to try to create 
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The basic idea is that we’ll create parametric equations for a circle, and then rotate 

that circle around the z-axis to make the bagel.  So, to begin, imagine that we fix an 

angle θ  in the xy-plane that is measured with respect to the positive x-axis.  This 

angle will define a plane that is orthogonal to the xy-plane, and we want to put our 

circle in this plane.  To do this, recall that we need two unit vectors that are 

perpendicular to one another.  Fortunately, it turns out that it is easy to find two such 

vectors.  For one of the vectors we can use ˆ ˆcos sinu i jθ θ= + .  This vector is a unit 

vector, and it lies in both the xy-plane and the plane defined by our angle θ .  For the 

second vector we can use ˆv k= .  This unit vector points straight up, and is 

perpendicular to u .  In terms of these vectors, the vector-valued function 

cos sin , 0 2 ,u vϕ ϕ ϕ π+ ≤ ≤  will now define a circle of radius 1.  If, however, we want 
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our circle to be of radius 2, then we just need to multiply each component by 2 to get 

2cos 2sin , 0 2 .u vϕ ϕ ϕ π+ ≤ ≤   At this point, however, there is one small problem.  

The center of this circle of radius 2 is at the origin, and we need to offset it from the 

origin before we rotate it around the z-axis.  Fortunately, we have a unit vector 

pointing in the direction we want to offset it.  Namely, u .  So if we want to move our 

circle 5 units in the direction of u , all we need to do is add 5u  to the previous result.  

This will give us 2cos 2sin 5 , 0 2 .u v uϕ ϕ ϕ π+ + ≤ ≤   To now finish constructing the 

bagel (torus), all we need to do is rotate this around the z-axis by letting θ  vary from 

0 to 2π . Our final vector-valued function is, 

( ) ( )

( , ) 2cos 2sin 5
ˆˆ ˆ ˆ ˆ2cos cos 2cos sin 2sin 5cos 5sin

ˆˆ ˆ2cos cos 5cos 2cos sin 5sin 2sin

r u v u

i j k i j

i j k

θ ϕ ϕ ϕ

ϕ θ ϕ θ ϕ θ θ

ϕ θ θ ϕ θ θ ϕ

= + +

= + + + +

= + + + +

 

From this, we can see that our parametric equations should be, 

2cos cos 5cos
2cos sin 5sin
2sin

0 2
0 2

x
y
z

ϕ θ θ
ϕ θ θ
ϕ

ϕ π
θ π

= +
= +
=
≤ ≤
≤ ≤

 

Again, here is the wonderful graph that results! 
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A variation of what we just did can be used to create, for example, solids of 

revolution about the x-axis.    For this example, let’s suppose that we want to rotate 

the curve 2y x=  about the x-axis.  Then let’s begin by expressing this curve 

parametrically as x t= , y t= .  Next, we need to create circular cross-sections that 

will be parallel to the xz-plane.  Fortunately, we an use our unit vectors ĵ  and k̂  for 

this purpose, and, hence, ˆˆcos sinv j kθ θ= +  will give us a unit circle parallel to the xz-

plane.  However, we don’t want the radius of our circle to always be 1.  We want it to 

be equal to our function value as we move along the x-axis.  In particular, when x t= , 

we want the radius of our circular cross-section to be t .  Thus, let’s set 

ˆˆcos sinv t j t kθ θ= + .  If we now set ˆw t i= , then we’ll get the correct equation for 
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the solid of revolution by simply adding v  and w  together.  In plain English, go out t 

units on the x-axis, draw a circle of radius t , and then repeat with different values 

of t.  Here’s the final equation and the graph that results. 

ˆˆ ˆ( , ) cos sin

cos

sin
0 2
0 2

r t t i t j t k
x t

y t

z t

t

θ θ θ

θ

θ
θ π

= + +
=

=

=
≤ ≤
≤ ≤

 

 

 

Now let’s look at a more unusual graph described by parametric equations, namely 

the Möbius strip.  This is an object formed by taking a strip of paper, giving it a half-

twist, and then connecting the ends.  The resulting surface looks like this. 
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This is an example in mathematics of what we call a one-sided surface.  In other 

words, if you trace a line lengthwise along this object, then you’ll see when done that 

you’ve traced the line on both of what you may have thought were two different 

sides.  A better way to convince yourself that this surface is different is to cut it in 

half lengthwise along the line you traced.  When you finish this, you’ll discover that 

you have just one long twisted piece instead of two pieces.  If nothing else, this 

should convince you that it doesn’t have two sides.  Otherwise, when we cut it in half 

we should get two pieces!  The parametric equations for the above Möbius strip are as 

follows, 
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cos sin cos
2

sin sin cos
2

cos
2

0 2
0.5 0.5

ux u v u

uy u v u

uz v

u
v
π

⎛ ⎞= + ⎜ ⎟
⎝ ⎠
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

≤ ≤
− ≤ ≤

 

 

An even more intriguing object is the Klein bottle which is pictured below. 

 

Technically, this is a surface that takes a twist through a fourth dimension in order to 

create an object whose inside is the same as its outside.  Also, while this may seem a 
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little fanciful, isn’t that the way we are?  In other words, we normally tend to think of 

ourselves as a ghost in a machine whose thoughts and perceptions occur on the inside 

in response to what goes on on the outside.  However, every time we have a thought 

or emotion, doesn’t that register as brain activity on the outside, in the physical 

world?  In this sense, we can’t really make a clear distinction between our inside and 

our outside, and that is why we are like living Klein bottles.  Everything that occurs 

“inside” us has its corresponding marker “outside” of us back in the physical world.  

By the way, mathematicians refer to both the Möbius strip and the Klein bottle as 

nonorientable figures.  In other words, we can’t give either object any sort of 

orientation with respect to side.  In each object, what appear to be separate sides are 

really the same.  With most things we encounter in life, we can assign some clear 

orientation like north, south, east, or west, or democrat or republican, but with these 

objects, the surfaces lack the appropriate orientations that are needed to create 

separation between sides.  Consequently, I often think that in order to transcend 

separation and become one with anything, you first need to become a little 

disoriented! 

 

To generate the nice image of the Klein bottle above, I had to use four sets of 

parametric equations and then combine the images when done.  For future reference, 

here are my equations. 
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( )
( )

1:
2.5 1.5cos cos

2.5 1.5cos sin
3

0 2
0

Klein
x v u

y v u
z v

u
v

π
π

= +

= +

=
≤ ≤
≤ ≤

 

 

2 :
2 2cos sin
cos
3

0
0

Klein
x v u
y u
z v

u
v

π
π

= − +
=
=
≤ ≤
≤ ≤

 

 

( )

( )

3:
2 2 cos cos
sin
3 2 cos sin

0
0

Klein
x u v
y u
z u v

u
v

π

π
π

= + +

=

= + +

≤ ≤
≤ ≤

 

 

( )
( )

4 :
2.5 1.5cos cos

2.5 1.5cos sin
2.5sin

0
0

Klein
x v u

y v u
z v

u
v

π
π

= +

= +

= −
≤ ≤
≤ ≤
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Now let’s look at something quite different.  We’ll start, though, with some 

parametric equations that look very innocuous at first glance. 

x s t
u s t
z st

= +
= −
=

 

 

Now, however, suppose we scramble everything up by putting our variables in a row 

matrix, ( )s t s t st+ − , and multiplying on the right by the matrix 

cos( ) sin( ) cos( )
sin( ) 5 3

2 sin( ) cos(

t t t st
s t

s s t

+ −⎛ ⎞
⎜ ⎟+ −⎜ ⎟
⎜ ⎟−⎝ ⎠

, where 3 3s− ≤ ≤  and 3 3.t− ≤ ≤  
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Then the resulting graph looks like this.  I call this one my Klingon bird of prey! 

 

We can create a lot of interesting graphs by taking some standard parametric 

equations in two variables, and then multiplying on the right by a matrix to scramble 

them up.  Then you can add another twist to the mix by deciding whether you want to 

treat the final result as rectangular, cylindrical, or spherical coordinates.  This is 

where it really gets bizarre!  Here are some more examples for you to ponder. 
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1. [ ] [ ]( )rectangular

3 5sin cos3
( , , ) 10 4cos cos , 10 4cos sin ,4sin sin 5 sin

2cos sin 8

s s
x y z s t s t s s s

s s

⎛ ⎞
⎜ ⎟= + + ⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

0 2
0 2

s
t

π
π

≤ ≤
≤ ≤
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2. ( )2 2
cylindrical

3 5sin cos3
( , , ) , , sin 5 sin

2cos sin 8

s s
r z s t s t s t s s

s s
θ

⎛ ⎞
⎜ ⎟= + − − ⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

0 3
0 3

s
t

π
π

≤ ≤
≤ ≤
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3. ( )spherical

3 5sin cos3
( , , ) cos( ),sin( ),cos( ) sin 5 sin

2cos sin 8

s s
s t st s t s s

s s
ρ θ ϕ

⎛ ⎞
⎜ ⎟= + − ⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

0 2
0 2

s
t

π
π

≤ ≤
≤ ≤

 

 

 

A now we’ll close this chapter on vector transformations and parametric equations in 

two variables by presenting a variety of interesting graphs that mathematicians have 

discovered.  Enjoy! 
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4. cosx t s=  
sin
cos7

4
0 2
0 1

y t s
t sz

s
t

π

=

=

≤ ≤
≤ ≤
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5. cosx t s=  
sin

0.7
0 4
0 3

y t s
z s

s
t

π

=
=
≤ ≤
≤ ≤
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6. cosx t s=  
sin

cos( 3 )
0 2
0 5

y t s
z s t

s
t

π
π

=
= − +
≤ ≤
≤ ≤
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7. 3cos cosx s t=  
3sin cos
3sin 2

0 2

y s t
z t s

s
t

π
π π

=
= +
≤ ≤

− ≤ ≤
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8. cos2 sin cosx s s t=  
cos 2 sin sin
cos2 cos

0
0 2

y s s t
z s s

s
t

π
π

=
=
≤ ≤
≤ ≤
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9. ( )cos 3 cosx s s t= +  
( )sin 3 cos

sin 7
0 4
0 2

y s s t
z s t s

s
t

π
π

= +

= −
≤ ≤
≤ ≤
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10. sin cos
18
tx s t=  

sin sin
18

cos
18 6

0
0 6

ty s t

t tz s

s
t

π
π

=

= +

≤ ≤
≤ ≤

 

 

 

 

 

 

 

 


