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CHAPTER 7   

DERIVATIVES 

 

At last we have arrived!  We’re finally ready to look at the wide, wide world of 

derivatives of multivariable functions!  And as you might suspect, just as graphing is 

richer and more complex in three dimensions, so will the concept of a derivative have 

more dimensions to it (pun intended!).  In a nutshell, though, we will say that a 

function of several variables is differentiable at a point if we can define a nonvertical 

tangent plane at that point.  For example, below is a graph of 2 2( , ) 4z f x y x y= = − − +  

with a tangent plane plotted at the point ( )1,2, 1− . 
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When we look at this tangent plane, we see that every single tangent line at the point 

( )1,2, 1−  is contained in that plane, and we also realize that the tangent plane is a good 

approximation for the function when our input values are close to 1x =  and 2y = .  

Also, because we can define a tangent plane at this point, that means that as we zoom 

in on this point the graph of 2 2( , ) 4z f x y x y= = − − +  resembles the tangent plane 

more and more.  That property is what we call local linearity, and you can easily see 

this property for many functions in two dimensions using a standard graphing 

calculator.  Just take function such as 2( )y f x x= = , zoom in on any point on the 

graph, and your curve will resemble a straight line more and more as you zoom in.  In 

other words, 2( )y f x x= =  is locally linear.  Here is the graph of 

2 2( , ) 4z f x y x y= = − − +  zoomed in around the point ( )1,2, 1−  so that you can see the 

local linearity starting to take effect. 
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The appropriate question to ask now is what sorts of things would prevent a graph 

from being differentiable at a point?  Normally, the same sorts of things that cause 

nondifferentiability back in two dimensions.  In other words, breaks in continuity and 

sharp points.  Here are a couple of examples. 
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In the first graph, we’re not going to be able to define tangent planes where the breaks 

in the graph occur, and in the second surface, we can’t define tangent planes at the 

sharp edges or at the sharp point at the top of the graph.  As you’ve seen before, 

derivatives require smoothness in order to be defined, and wherever a graph is not 

smooth, it’s not going to be differentiable. 

 

Now let’s go back to the graph of 2 2( , ) 4z f x y x y= = − − + .  What’s obvious here is 

that the point with coordinates ( )0,0,4  represents the top of a hill.  When that happens 

we call it a local maximum.  Furthermore, if there are no other points or hilltops on 

the graph that are higher, then we also call it an absolute maximum. 
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If we now add the tangent plane to this point, then we can visually see something 

very important.  Namely, that it’s horizontal.  This also means that that all the tangent 

lines in all directions have slope zero. 

 

On the other hand, if we look at the graph of 4z x y= − − + , then we can see that it 

also has a local and absolute maximum at ( )0,0,4 , but no tangent plane exists at this 

point since it’s a sharp point.  This also tells us that tangent lines will generally fail to 

exist in some if not all directions when we can’t define a tangent plane. 
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Back in first semester calculus you probably saw that if a function ( )y f x=  had a 

local maximum or minimum at a point, then either the derivative was zero at that 

point or it was undefined.  A similar criteria exists for functions of the form 

( , )z f x y= .  If a local maximum or minimum exists for a function of this sort, then 

either the slopes of the tangent lines in both the direction of the x-axis and the y-axis 

are zero, or else one of these slopes fails to exist.  If we find points that meet this 

criteria, then those are our candidates for local maximums and minimums. 

 

Let’s now go back to the function 2 2( , ) 4z f x y x y= = − − +  and rethink how we might 

find tangent lines at a point.  Previously, back in chapter 3, we went through a 

somewhat complicated procedure.  That is, we picked a point, we fixed either the x- 
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or y-value, we graphed the resulting equation in two dimensions, we took a derivative 

to find the slope of the tangent line at a particular point, and then we moved the whole 

thing back into three dimensions.  Trust me, there’s an easer way to do it, and we’re 

all about life being easy!  Instead of fixing a y-value and then differentiating with 

respect to x, let’s just pretend that y is fixed and go ahead and find our derivative.  

Thus, if 2 2( , ) 4z f x y x y= = − − + , but we pretend that y is a fixed constant, then when 

we differentiate, we get back 2x− .  In other words, if y is a constant, then the 

derivative of 2y−  is zero just as the derivative of the constant term 4 is zero.  Now 

let’s go back and pretend this time that it’s x which is fixed to a constant value and y 

that is variable.  The derivative of z this time will be 2y− . 

 

Already this may be getting a little confusing if we try to do too much of it in our 

head, so let’s try and introduce some notation in order to simplify things.  First, since 

z is a function of two variables, that means there are two derivatives we could 

compute here, one with respect to x and one with respect to y.  Since each derivative 

by itself tells only part of the story, we call each derivative a partial derivative, and 

we have two basic notations that we’ll use for partial derivatives.  For the partial 

derivative of ( , )z f x y=  with respect to x, we’ll use xz  or xf  or z
x
∂
∂

 or f
x
∂
∂

.  Similarly, 

for the partial derivative of ( , )z f x y=  with respect to y, we’ll use yz  or yf  or z
y
∂
∂

 or 
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f
y
∂
∂

.  The latter notation is similar to the usual notation for a derivative except that we 

use a somewhat stylized version of the letter “d” to denote that it’s a partial 

derivative.  If you use this notation, write it correctly so that people will know that it 

is a partial derivative that you are talking about!  Also, both of these partial 

derivatives are technically defined in terms of limits such as the ones below. 

0

0

( , ) ( , )lim

( , ) ( , )lim

x x

y y

z f x x y f x yz
x x

z f x y y f x yz
y y

Δ →

Δ →

∂ + Δ −
= =
∂ Δ

∂ + Δ −
= =
∂ Δ

 

In practice, though, you find the partial derivative with respect to x by treating y as 

fixed, and you find the partial derivative with respect to y by treating x as fixed.  Also, 

the partial derivative of z with respect to x can be interpreted as either the 

instantaneous rate of change of z with respect to a change in x, or as the slope of the 

tangent line in the direction of the x-axis if you evaluate this partial derivate at a 

particular point.  Likewise, the partial derivative of z with respect to y can be 

interpreted as either the instantaneous rate of change of z with respect to a change in 

y, or as the slope of the tangent line in the direction of the 0-axis.  Since it’s important 

to be very good at computing partial derivatives, below are several examples.  Study 

them well, and make sure you understand what is going on. 
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1. 2 2( , )z f x y x y= = +  

2z x
x
∂

=
∂

 

2z y
y
∂

=
∂

 

 
2. 2 2( , )z f x y x y= = −  

2z x
x
∂

=
∂

 

2z y
y
∂

= −
∂

 

 
3. ( , )z f x y xy= =  

z y
x
∂

=
∂

 

z x
y
∂

=
∂

 

 
4. ( , )z f x y x y= = +  

1z
x
∂

=
∂

 

1z
y
∂

=
∂

 

 

5. ( , ) yz f x y
x

= =  

2
z y
x x
∂ −

=
∂

 

1z
y x
∂

=
∂

 

 
6. ( , ) ln( )z f x y xy= =  

1z y
x xy x
∂

= =
∂

 

1z x
y xy y
∂

= =
∂
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7. 
25( , ) xyz f x y e= =  

2 25 2 2 55 5xy xyz e y y e
x
∂

= ⋅ =
∂

 

2 25 510 10xy xyz e xy xye
y
∂

= ⋅ =
∂

 

 
8. 2 2( , ) 4z f x y x y= = +  

8z x
x
∂

=
∂

 

2z y
y
∂

=
∂

 

 
9. ( )2 2( , )z f x y x y= = − +  

2z x
x
∂

= −
∂

 

2z y
y
∂

= −
∂

 

 
10. 2( , )z f x y x= =  

2z x
x
∂

=
∂

 

0z
y
∂

=
∂

 

 
11. ( , )z f x y xy= =  

( )
1
2

1
2 2

z yxy y
x xy

−∂
= ⋅ =

∂
 

( )
1
2

1
2 2

z xxy x
y xy

−∂
= ⋅ =

∂
 

 

Now let’s return to an exploration of 2 2( , ) 4z f x y x y= = − − +  and see how we might 

construct the tangent plane at the point ( )1,2, 1− .  Recall now that back in chapter 1 

we said that if an equation for a plane was written in the form z Ax By C= + + , then A 
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would be the slope of the plane in the direction of the x-axis, and B would be the 

slope of the plane in the direction of the y-axis.  We can now find these slopes for 

2 2( , ) 4z f x y x y= = − − +  by taking partial derivatives and evaluating the results at the 

point ( )1,2, 1− .  Clearly, 2xz x= −  and 2yz y= − .  If we evaluate these partial 

derivatives at 1x =  and 2y = , we get (1) 2(1) 2xz = − = − , and (2) 2(2) 4yz = − = − .  Thus, 

the equation for our tangent plane is starting to look like 2 4z x y C= − − + .  To now 

find the value of C, just plug in the coordinates of the point ( )1,2, 1−  for x, y, and z. 

1 2(1) 4(2) 9C C− = − − + ⇒ =  

2 4 9z x y= − − +  

 

If we now graph our parabolid, our point, and our surface together, then we can see it 

worked. 
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Now let’s backtrack a second and think in terms of how we would use our partial 

derivatives to find the location of our local maximum.  As we alluded to previously, 

at such an extreme point either both partial derivatives equal zero of one of them fails 

to exist.  Well, if we set each of the partial derivatives for 2 2( , ) 4z f x y x y= = − − +  

equal to zero, then we’re in business. 

2 0 0z x x
x
∂

= − = ⇒ =
∂

 

2 0 0z y y
y
∂

= − = ⇒ =
∂

 

Both partials are equal to zero when 0x =  and 0y = , so we’ll call the point ( )0,0  a 

critical point, and from the graph above we can see that we will have a local (and 

absolute!) maximum at this point.  Also, technically speaking, the local maximum is 
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just the z-value that we get at our critical point, in this case (0,0) 4z f= = .  However, 

I always like to know not only the z-coordinate, but the x- and y-coordinates, too.  

Thus, I’ll always give my answers as coordinates for a point, and I’ll refer, in this 

example, to the point ( )0,0,4  as a local maximum point.  And finally, when we add 

the tangent plane 4z =  to our graph, we see that it is perfectly horizontal at the point 

( )0,0,4 . 

 

Later on, we’ll learn an algebraic test for determining whether a critical point results 

in a local maximum or a local minimum or something else, but for now we’ll 

combine our algebraic methods with graphical insights. 
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At this point, we want to move on to another topic and define what’s known as the 

total differential.  It is basically a formula that shows the relationship between small 

changes in x and y and the corresponding change in z, and among other things, it can 

be used for doing approximations related to the output of our function.  We’ll begin 

our development by looking at a diagram that’s similar to some we’ve seen before. 

 

 

 

 

 

 

 

 

What we are looking at here is a portion of a tangent plane that we might have at a 

point ( ), ,a b c  on the surface of some function ( , )z f x y= .  The graph of ( , )z f x y= , 

however, is not depicted here.  All we are looking at is the tangent plane.  Also, 

assume that ( ), ,x y z  is another point on the graph of ( , )z f x y=  that is close to 

( ), ,a b c .  Then the change in z is z z cΔ = − , and using the tangent plane we can 

approximate this change in z by 1 2z z zΔ ≈ Δ + Δ .  Also, from our diagram above, we 

can see that the slope of the plane in the direction of the positive x-axis is 1z
x

Δ
Δ

 and the 

xΔ
1zΔ

2zΔ

( , , )a b c

( , , )x y z

yΔ 1 2z z zΔ + Δ ≈ Δ}
xΔ

1zΔ

2zΔ

( , , )a b c

( , , )x y z

yΔ 1 2z z zΔ + Δ ≈ Δ}



Derivatives 

 197

slope of the plane in the direction of the positive y-axis is 2z
y

Δ
Δ

.  However, these 

slopes are also equal, respectively, to z
x
∂
∂

 and z
y
∂
∂

 for our function ( , )z f x y= .  Thus,  

1
1

2 2
2

z z zz x
x x x

z z zz y
y y y

Δ ∂ ∂
= ⇒ Δ = Δ

Δ ∂ ∂

Δ ∂ ∂
= ⇒ Δ = Δ

Δ ∂ ∂

 

And the consequence of this is that, 

1 2
z zz c z z z x y
x y
∂ ∂

− = Δ ≈ Δ + Δ = Δ + Δ
∂ ∂

. 

If we write these changes in x, y, and z as differentials, then we get an expression that 

we call the total differential. 

z zdz dx dy
x y
∂ ∂

= +
∂ ∂

 

However, since we are mainly going to use this expression for approximations, the 

previous form, 1 2
z zz c z z z x y
x y
∂ ∂

− = Δ ≈ Δ + Δ = Δ + Δ
∂ ∂

, is a little better.  For example, if 

we take 2 2( , ) 4z f x y x y= = − − +  and 1x =  and 2y = , and if we want to change our 

input to 1.1x =  and 2.3y =  then we can use the total differential to approximate both 

the new function value and the change that occurs in z.  For the change in z use the 

formula z zz x y
x y
∂ ∂

Δ ≈ Δ + Δ
∂ ∂

.  To finish the computation, we have to specify the change 
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in x, the change in y, and the value of both partial derivatives at our first point, ( )1,2 .  

The results are below. 

0.1
0.3

(1,2)2 , 2

(1,2)2 , 4

(1,2) (1,2) ( 2)(0.1) ( 4)(0.3) 1.4

x
y
z zx
x x
z zy
y y

z zz x y
x y

Δ =
Δ =
∂ ∂

= − = −
∂ ∂
∂ ∂

= − = −
∂ ∂

∂ ∂
Δ ≈ Δ + Δ = − + − = −

∂ ∂

 

We can also approximate the new z value by rewriting our formula above as 

z zz x y c
x y
∂ ∂

≈ Δ + Δ +
∂ ∂

.  In this case, we get (1.1, 2.3) ( 2)(0.1) ( 4)(0.3) 1 2.4z ≈ − + − − = − .  If 

we computer the actually value of (1.1, 2.3)z , we get 

2 2(1.1, 2.3) (1.1 ) (2.3 ) 4 2.5z = − − + = −  which means the actual change in z is 1.5− .  

Well, we can see that our approximations are pretty close, and that’s the whole point.  

Nonetheless, the total differential has some other applications, too.  It helps us see at a 

glance what the chain rule should look like for a function of several variables. 

 

Recall that in first semester calculus you occasionally had a function that could be 

considered a composition of two or more functions, and then you had to use the chain 

rule in order to get the derivative.  Likewise, for functions of two or more variables 

there also exists a version of the chain rule, several in fact.  Thus, it’ll be lots of fun!  

From our derivation of the total differential, you can pretty much guess the correct 
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form for the chain rule.  For example, suppose that z is a function of two variables 

and that x and y are both functions of one variable, t.  In other words, ( )x x t= , 

( )y y t= , and ( )( , ) ( ), ( )z f x y f x t y t= = , and we want to find dz
dt

.  Well, since the total 

differential is z zdz dx dy
x y
∂ ∂

= +
∂ ∂

, a good (and correct!) guess for dz
dt

 would be  

dz z dx z dy
dt x dt y dt

∂ ∂
= +
∂ ∂

 

Let’s go back to my favorite diagram and look at this in a little more detail. 

 

 

 

 

 

 

 

Recall that from this diagram we derived the formula z zz x y
x y
∂ ∂

Δ ≈ Δ + Δ
∂ ∂

.  Now just 

divide everything by tΔ  to get z z x z y
t x t y t

Δ ∂ Δ ∂ Δ
≈ +

Δ ∂ Δ ∂ Δ
.  And finally, take limits as 0tΔ →  

and you get, 

0 0
lim lim
t t

dz z z x z y z dx z dy
dt t x t y t x dt y dtΔ → Δ →

⎛ ⎞Δ ∂ Δ ∂ Δ ∂ ∂
= = + = +⎜ ⎟Δ ∂ Δ ∂ Δ ∂ ∂⎝ ⎠

 

xΔ
1zΔ

2zΔ

( , , )a b c

( , , )x y z

yΔ 1 2z z zΔ + Δ ≈ Δ}
xΔ

1zΔ

2zΔ

( , , )a b c

( , , )x y z

yΔ 1 2z z zΔ + Δ ≈ Δ}
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And that’s our chain rule!  There are a couple of additional points you need to be 

aware of, though.  First, when do we use partial derivative notation and when do we 

use regular derivative notation?  Well, the rule is that if a variable is a function of 

more than one input, then you use partial derivative notation, and if it’s a function of 

a single input, then you use regular derivative notation.  Up above, at first glance we 

have z as a function of two variables, x and y.  However, each of these variables can 

be written as a function of just one variable, t, and so ultimately z is a function of a 

single input t.  That’s why we write dz
dt

 as an ordinary derivative.  We can also draw 

diagrams such as the one below to help us. 

 

 

 

 

 

 

 

 

 

To get the appropriate chain rule, we multiply along the branches and then add 

together all the results. 

f
x
∂
∂

f
y
∂
∂

dx
dt

dy
dt

dz f dx f dy
dt x dt y dt

∂ ∂
= +
∂ ∂

z

x

y

t

t

f
x
∂
∂

f
y
∂
∂

dx
dt

dy
dt

dz f dx f dy
dt x dt y dt

∂ ∂
= +
∂ ∂

z

x

y

t

t
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If we have different functions, however, then we might need to use different versions 

of the chain rule.  For example, suppose we have ( , )z f x y= , ( , )x x s t= , and 

( , )y y s t=  and that we want to find the derivative of z with respect to t.  Then this 

derivative will be a partial derivative since we won’t be able to express z solely as a 

function of t.  Our tree diagram for the chain rule in this case is as follows. 

 

 

 

 

 

 

 

 

 

Now let’s suppose that 2 2z x y= + , 2x t= , and 3y t= , and that we want to find dz
dt

.  

Then by the chain rule,  

2 2 3 2 3 5(2 )(2 ) (2 )(3 ) (2 )(2 ) (2 )(3 ) 4 6dz z dx z dy x t y t t t t t t t
dt x dt y dt

∂ ∂
= + = + = + = +
∂ ∂

 

x
t
∂
∂

z f x f y
t x t y t
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

f
x
∂
∂

f
y
∂
∂

y
t

∂
∂

y
s
∂
∂

x
s
∂
∂

z

x

y

t

t

s

s

x
t
∂
∂

z f x f y
t x t y t
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

f
x
∂
∂

f
y
∂
∂

y
t

∂
∂

y
s
∂
∂

x
s
∂
∂

z

x

y

t

t

s

s

z f x f y
t x t y t
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

f
x
∂
∂

f
y
∂
∂

y
t

∂
∂

y
s
∂
∂

x
s
∂
∂

z

x

y

t

t

s

s

f
x
∂
∂

f
y
∂
∂

y
t

∂
∂

y
s
∂
∂

x
s
∂
∂

z

x

y

t

t

s

s



Derivatives 

 202

A question you should be asking yourself now is, “Couldn’t we have also done this 

just by first writing x and y in terms of t and then differentiating without having to use 

the chain rule?”  The answer to this question is “yes” as you can see below. 

2 2 2 2 3 2 4 6( ) ( )z x y t t t t= + = + = +  

3 54 6dz t t
dt

= +  

However, the chain rule is also going to be important to us for the role that it plays in 

helping us prove some key theorems and to derive other important results.  For 

example, suppose we have the equation 3 2 3 0xy x x y+ + = , and suppose that y is a 

function of x.  Then we can use the chain rule to help us implicitly find the derivative 

of y with respect to x.  First, if we think of the left-hand side of this equation as 

defining a function 3 2 3( , )f x y xy x x y= + + , then the chain rule tells us that  

df f dx f dy f f dy
dx x dx y dx x y dx

∂ ∂ ∂ ∂
= + = +
∂ ∂ ∂ ∂

. 

However, since the right-hand side of our original equation is equal to zero, we can 

set 0f
x
∂

=
∂

 to get, 

0f f dy
x y dx
∂ ∂

+ =
∂ ∂

. 

From here it’s a simple task to solve for dy
dx

 to get, 
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f
dy x

fdx
y

∂
∂= −
∂
∂

 

See how easy the chain rule made that derivation? 

 

Another easy fact to now derive from the chain rule is the product rule for derivatives 

that everyone learns back in calculus of a single variable.  The only thing we’ll do 

different is that instead of thinking of ( ) ( ) ( )y y x f x g x= = ⋅  as a function of one 

variable, we’ll now think of it as a function of two, f and g.  In other words, 

( , ) ( ) ( )y y f g f g f x g x= = ⋅ = ⋅ .  A quick application of the chain rule for functions of 

several variables will immediately yield from this the familiar product rule.   

 dy y df y dg df dg dg dfg f f g
dx f dx g dx dx dx dx dx

∂ ∂
= + = + = +
∂ ∂

. 

 

Now we want to look at another useful tool that is known as the gradient.  For a 

function ( , )z f x y=  we define the gradient as ˆ ˆf fgrad f f i j
x y
∂ ∂

= ∇ = +
∂ ∂

.  Notice that 

the gradient is a vector that is formed using our first partial derivatives.  Also, the 

notation " "f∇  is generally read as “del f.”  Furthermore, if we have a function of 

three variables such as ( , , )w f x y z= , then we would have ˆ ˆ ˆf f ff i j j
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

.  One 

of the important applications of the gradient vector is the following theorem. 
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Theorem:  Let ( , )z f x y=  be differentiable at ( , )a b , and suppose ( , )f a b c= .  Also, let 

C be the level curve ( , )f x y c=  that passes through ( , )a b  in the xy-plane.  If C is 

smooth with a smooth parametrizatoin ( )r t  and if ( , ) 0f a b∇ ≠ , then ( , )f a b∇  is 

normal to C at ( , )a b .  In other words, f∇  is perpendicular to ( )r t  at ( , )a b . 

 

Proof:  Let ˆ ˆ( ) ( ) ( )r t x t i y t j= +  with t I∈ , an interval, be a smooth parametrization for 

C.  Then ( )( , ) ( ), ( )f x y f x t y t c= =  when t I∈ .  Hence,  

( )( ), ( )
0

df x t y tdc f dx f dy drf
dt dt x dt y dt dt

∂ ∂
= = = + = ∇

∂ ∂
i  

Therefore, f∇  is normal to C at ( , )a b .    ■ 

 

Notice how we used the chain rule in the above proof.  That’s one of the reasons it’s 

so important.  Let’s now do a construction to make this all a little more concrete.  For 

our function, let’s use 2 2z x y= − , the level curve 4z = , and for input we’ll use the 

point ( )2,0P = .  Then ˆ ˆ ˆ ˆ2 2z zz i j x i y j
x y
∂ ∂

∇ = + = −
∂ ∂

, and ˆ(2,0) 4z i∇ = .  To plot this 

vector as a displacement vector in the xy-plane starting at ( )2,0 , we can use the 

following parametric equations:  2 4 , 0, 0 1x t y t= + = ≤ ≤ .  And below we have the 

graph of our surface as well as the gradient vector at the point ( )2,0  on the level 

curve corresponding to 4z = . 
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Another success!  It sure looks to me like the gradient is perpendicular to our level 

curve at the specified point. 

 

Now here’s something which is both a little different and very important.  Let’s do 

some constructions this time with the function 2 2( , ) 4z f x y x y= = − − +  at the point 

( )1,2, 1− .  We looked at this function earlier in this chapter and found that the 

equation for the tangent plane at the point ( )1,2, 1−  was 2 4 9z x y= − − +  where 

(1,2)2 f
x

∂
− =

∂
 and (1,2)4 f

y
∂

− =
∂

, the slopes of tangent lines of 2 2( , ) 4z f x y x y= = − − + , 

respectively, in the directions of the positive x- and y-axis when evaluated at the point 

( )1,2, 1− .  If we now rewrite our equation as 0 2 4 9x y z= − − − + , then from past 

discussions we know that the coefficients of x, y, and z give us a vector that is normal 

to this plane.  In other words, the vector ˆˆ ˆ2 4v i j k= − − −  is perpendicular to the 

tangent plane to our surface 2 2( , ) 4z f x y x y= = − − +  at the point ( )1,2, 1− .  But notice 

this, if we set 2 2 4w x y z= − − − + , then the surface 2 20 4x y z= − − − +  is just a level 

surface for this function of three variables.  Furthermore, the gradient of w is 

ˆˆ ˆ2 2w xi yj k∇ = − − − , and evaluated at the point ( )1,2, 1−  we get 

ˆˆ ˆ(1,2, 1) 2 4w i j k∇ − = − − − .  But this is the same vector ˆˆ ˆ2 4v i j k= − − −  that is 

perpendicular to our tangent plane!  In other words, we have the following general 

result. 
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Theorem:  If w c=  is a level surface for the function ( , , )w f x y z= , then the gradient 

of w, w∇ , evaluated at a point P on this level surface is perpendicular to the tangent 

plane at P on that surface. 

 

Let’s do another construction as an example because this gives us yet another way to 

find a tangent plane.  We can first find a gradient vector that is normal to the tangent 

plane, and then use the dot product to find the equation for the tangent plane.  Here’s 

how.  Suppose 2 2z x y= +  and (1,2,5)P = .  Then P is a point on the surface of z.  

Notice, also, that we can write the equation for our surface as 2 20 x y z= + − .  Now let 

2 2w x y z= + − .  Then we can think of  2 20 x y z= + −  as just a level surface for the 

function 2 2w x y z= + − .  Furthermore, ˆˆ ˆ2 2w xi yj k∇ = + − , and hence, 

ˆˆ ˆ(1,2,5) 2 4w i j k∇ = + −  is normal to our surface at the point P.  Now consider the 

tangent plane to our surface at the point (1,2,5)P = , and suppose ( , , )Q x y z=  is 

another point in that plane.  Then since ˆˆ ˆ(1,2,5) 2 4w i j k∇ = + −  is perpendicular to the 

plane, it is also perpendicular to the displacement vector 

ˆˆ ˆ( 1) ( 2) ( 5)PQ x i y j z k= − + − + −   Therefore, (1,2,5) 0w PQ∇ =i .  But this gives us  

( ) ( )ˆ ˆˆ ˆ ˆ ˆ0 2 4 ( 1) ( 2) ( 5) 2( 1) 4( 2) ( 5)

2 4 5

i j k x i y j z k x y z

x y z

= + − − + − + − = − + − − −

= + − −

i
 

In other words, 2 4 5z x y= + −  is the tangent plane to our surface at (1,2,5)P = . 
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Now let’s graph everything.  Our surface is 2 2z x y= + , our tangent plane is 

2 4 5z x y= + − , and the parametric equations for graphing our gradient vector at the 

point (1,2,5)P =  are, 

1 2
2 4
5

0 1

x t
y t
z t

t

= +
= +
= −
≤ ≤

 

 

And there we have it!  Level surface, tangent plane, point, and gradient vector that is 

perpendicular to the level surface. 

 

So far we’ve looked only at the slopes of tangent lines in the directions of the positive 

x-axis and the positive y-axis.  These values correspond to z
x
∂
∂

 and z
y
∂
∂

.  However, 
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suppose we want to find the slope of a tangent line in some other direction.  If we do, 

then we’ll refer to this slope as a directional derivative.  Furthermore, if a tangent 

plane contains all possible tangent lines to a surface at a point, and if the tangent 

plane can be determined from the values of z
x
∂
∂

 and z
y
∂
∂

 at that point, then we should 

be able to find the value of a directional derivative directly from the values of z
x
∂
∂

 and 

z
y
∂
∂

.  And that’s exactly what’s going to happen.  Let’s start by looking at yet another 

variation of my favorite diagram. 

 

 

 

 

 

 

 

 

 

In this diagram, we are looking at a tangent plane to some surface at the point ( , , )a b c , 

and the orange line represents a tangent line in the direction of a unit vector 

ˆ ˆu xi yj= Δ + Δ  that is shown in magenta above.  Since the length of ˆ ˆu xi yj= Δ + Δ  is 1, it 

xΔ yΔ ˆ ˆu xi y j= Δ + Δ

1zΔ

2zΔ

1 2( )uD f z z= Δ + Δ}
( , , )a b c

xΔ yΔ ˆ ˆu xi y j= Δ + Δ

1zΔ

2zΔ

1 2( )uD f z z= Δ + Δ}
( , , )a b c

xΔ yΔ ˆ ˆu xi y j= Δ + Δ

1zΔ

2zΔ

1 2( )uD f z z= Δ + Δ} 1 2( )uD f z z= Δ + Δ}
( , , )a b c
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follows that the slope of our tangent line is given just by the height of the right 

triangle depicted with ˆ ˆu xi yj= Δ + Δ  as the base.  In other words, by 1 2z zΔ + Δ .  But as 

we’ve seen previously with this diagram, 1
( , )z a bz x

x
∂

Δ = Δ
∂

 and 2
( , )z a bz y

y
∂

Δ = Δ
∂

.  

Therefore, the value of the directional derivative of ( , )z f x y=  in the direction of u  is  

1 2
( , ) ( , )( ) ( , )u

f a b f a bD f z z x y f a b u
x y

∂ ∂
= Δ + Δ = Δ + Δ = ∇

∂ ∂
i  

We usually abbreviate this formula as ( )uD f f u= ∇ i .  For example, if 

2 2( , )z f x y x y= = +  and 2 2 ˆ
2 2

u i j= + , then ( ) 2 2uD f f u x y= ∇ = +i .  If we now 

evaluate this derivative at the point 1 1,
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

, the we get 

1 1 1 1, , 1 1 2
2 2 2 2uD f f u⎛ ⎞ ⎛ ⎞

= ∇ = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i .  Thus, at the point 1 1, ,1
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 on the 

surface of 2 2( , )z f x y x y= = + , the tangent line in the direction of 2 2 ˆ
2 2

u i j= +  has 

slope 2.  If we now want to add the graph of this tangent line to our surface graph, it’s 

not too difficult if you think in terms of vectors.  Our point 1 1, ,1
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 on the 

surface corresponds to the position vector 1 1 ˆˆ ˆ
2 2

w i j k= + + .  Since our tangent line 

has slope 2, if we add our unit vector 2 2 ˆ
2 2

u i j= +  to this position vector and then 
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go up 2 units by adding on the vector ˆ2v k= , then everything should terminate at 

another point on the tangent line.  In other words, the vector u v+  is parallel to our 

tangent line.  Hence, we can describe the tangent line parametrically as 

( ) 1 1 2 2ˆ ˆˆ ˆ ˆ 2
2 22 2

w t u v i j k t i j k
⎛ ⎞⎛ ⎞

+ + = + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
.  This, in turn, gives us the 

following values for x, y, and z. 

1
2 2
1
2 2

1 2

tx

ty

z t
t

= +

= +

= +
−∞ < < ∞

 

 

WOW!  It actually worked! 
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If we go back to the formula we derived for computing the directional derivative as a 

dot product, ( )uD f f u= ∇ i , then there are even more wonderful things we can deduce.  

For instance, using our alternate formula for computing the dot product, we have 

( ) cos 1 cos cosuD f f u f u f fθ θ θ= ∇ = ∇ = ∇ ⋅ ⋅ = ∇i .  Among other things, this 

formula tells us that the directional derivative will take on its maximum positive 

value at a point on the surface when the angle between the gradient vector and the 

unit vector is zero, and this derivative will take on it’s negative value of largest 

magnitude when the angle between the gradient vector and the unit vector is 180°  (or 

π).  In other words, if you are trying to climb a hill, then the gradient vector points in 

the direction of steepest ascent.  I must confess that this really confused me when I 

first heard it mentioned decades ago in multivariable calculus because I thought to 

myself, “If I want to go up the hill as fast as possible, shouldn’t I go up in the 

direction of ‘up’?”  Well, yes, that’s true.  If you want to go up, then go up.  

However, the type of direction we are speaking of with regard to the gradient vector 

is more like a compass direction.  Consequently, if you are facing north and there is a 

mountain in front of you, then the direction you go in to quickly ascend the mountain 

is north, not up.  And if you want to descend the mountain as quickly as possible, then 

you go in the opposite direction, south.  As an example, let’s look at the mountain 

2 2 15z x y= − − +  below. 
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The top of this mountain is at ( )0,0,15 , and if we want to ascend the mountain as 

quickly as possible, then our direction in the plane should always be pointing towards 

the z-axis.  Now let’s find the gradient vector and evaluate it at the point ( )2,2,7 .  We 

have that ˆ ˆ2 2z xi yj∇ = − −  and ˆ ˆ(2,2,) 4 4z i j∇ = − − .  In the graph below, we’ve plotted a 

blue dot at ( )2,2,7  and a red dot right below it at ( )2,2,0 .  Furthermore, we’ve 

attached our gradient vector to the red dot, and sure enough, it’s pointing right toward 

the z-axis.  So as we predicted, if we want to ascend this hill as quickly as possible, 

then our compass direction should always be towards the z-axis. 
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At this point we’ve talked a lot about derivatives of ( , )z f x y=  with respect to x and 

with respect to y, but if you think back to your first calculus course then you know 

that we didn’t stop there.  After all, once we’ve differentiated a function once, what 

could be more fun than differentiating it again!  For a function of the form ( , )z f x y= , 

there are two first partial derivatives we can compute.  How many second partial 

derivatives, however, are possible?  A moment’s reflection should tell us that there 

are four second partial derivatives.  This, of course, is because if you differentiate 

with respect to x the first time, then you can differentiate with respect to y or x the 

second time.  Likewise, if you differentiate with respect to y the first time, then you 
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can differentiate with respect to either variable the second time.  Thus, for ( , )z f x y= , 

there are four second partial derivatives that are available. 

 

What notation do we use for the second partial derivatives?  Well, just as we had two 

different notations for first partial derivatives, such as z
x
∂
∂

 and xz , we also have two 

notations for the second partial derivatives.  We write the four second partial 

derivatives either as 
2

2
z

x
∂
∂

, 
2

2
z

y
∂
∂

, 
2z

y x
∂
∂ ∂

, or 
2z

x y
∂
∂ ∂

, or we write them xxz , yyz , xyz , or yxz .  

The latter two derivatives in each list are called “mixed partials” because we 

differentiate first with respect to one variable and then the next.  However, there is an 

order difference you have to be aware of.  In the notation 
2z

y x
∂
∂ ∂

, we take our 

derivatives from right to left.  In other words, 
2z

y x
∂
∂ ∂

 means that you first differentiate 

with respect to x and then with respect to y.  This is because the notation 
2z

y x
∂
∂ ∂

 is just 

shorthand for 

z
x

y

∂⎛ ⎞∂⎜ ⎟∂⎝ ⎠
∂

.  On the other hand, when we write yxz , we perform the 

operations in order from left to right.  Thus, this one means that we should first 
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differentiate with respect to y and then with respect to x.  In summary, 
2

xy
z z

y x
∂

=
∂ ∂

, 

2

yx
z z

x y
∂

=
∂ ∂

, 
2

2 xx
z z

x
∂

=
∂

, and 
2

2 yy
z z

y
∂

=
∂

. 

 

Let’s now take a simple example.  If 2 2z x y= + , then 2xz x=  and 2yz y= .  If we now 

compute our second partials, we get 2xxz = , 0xyz = , 0yxz = , and 2yyz = .  For clarity, 

we often like to arrange these second partial derivatives in a matrix where they 

always appear in the following order. 

2 0
0 2

xx xy

yx yy

z z
z z

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Notice in this example that xx yyz z=  and xy yxz z= .  The first equality is simply by 

accident, but the second one, xy yxz z= , happens almost all the time.  In fact, there is a 

theorem that says that if the mixed partials are continuous at a point in the interior of 

the domain of our function, then the mixed partials will be equal at that point.  And 

since in calculus, we tend to deal with functions that are continuous almost 

everywhere, we tend to almost always have equality of the mixed partials.  Thus, we 

can use this property as a check to make sure that we’ve computed our mixed partials 

correctly. 
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How do we interpret second partial derivatives?  Again, pretty much the same as an 

ordinary derivative.  Just as in first semester calculus, xz  tells us the rate at which z is 

changing with respect to x, and if we take a cross-section by fixing a value for y, then 

for that fixed y value, xz  will tell us over what intervals, with respect to x, z is 

increasing and where it is decreasing.  If we continue on to the second partial xxz , 

then this will tell us something about the concavity of our cross-section.  For 

example, with 2 2z x y= + , we had 2xz x= .  This tells us that regardless of what we set 

y equal to, the z values in the corresponding cross-section will be decreasing when x 

is negative, increasing when x is positive, and we’ll have a horizontal tangent line 

when 0x = .  Differentiating with respect to x a second time gives us 2xxz = .  This is 

now telling us that now matter what value we fix y at, the cross-section will be 

concave-up.  Below we see a cross-section corresponding to 2y = − , and as predicted, 

the graph of the cross-section is decreasing for 0x <  and increasing for 0x > , and for 

all values of x, the graph is concave-up.  
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In a similar manner, yyz  will tell us something about the concavity of a cross-section 

obtained by fixing a value of x. 

 

Now how do we interpret the mixed partials xyz  and yxz .  On the one hand, xyz  tells 

us the rate at which z
x
∂
∂

 changes with respect to a change in y, and yxz  tells us the rate 

at which z
y
∂
∂

 changes with respect to a change in x.  That part is clear simply from our 

understanding that derivatives are always instantaneous rates of change.  But on the 

other hand, these mixed partials are much harder to visualize geometrically.  In the 

case of 2 2z x y= + , it’s pretty easy.  For this function, we have 0xy yxz z= = .  This 
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means that if we first find xz  and then look to see how this rate changes as we let y 

change, we discover that it doesn’t change at all.  The rate of change is zero.  For 

example, let’s take 2 2z x y= + , fix things at a point (1,1,2)P =  on the graph, and look 

at the cross-section corresponding to 1x = .  Below is the graph of our surface along 

with the cross-section, and the tangent line at the point (1,1,2)P = . 

 

If we now repeat this construction at the fixed values 2x =  and 3x = , we’ll see that 

the slopes of the tangent lines corresponding to 1y =  don’t change.  And this happens 

because 0yxz = .  In other words, the slopes of the tangent lines in the direction of the 

y-axis don’t change as x changes, the rate of change with respect to x is zero.  Here’s 

a graph of what we’re talking about. 
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The red curve above corresponds to the cross-section 1y = .  As we let x vary along 

this curve, the slopes of the tangent lines in the direction of the y-axis remain 

unchanged.  In other words, their rate of change is zero.  This is what 0yxz =  is trying 

to tell us.  If this is hard to visualize, don’t worry to much about it.  It takes practice.  

Furthermore, the interpretations of xxz  and yyz  as indicators of concavity will be far 

more important to us in the long run. 

 

It’s finally time for us to discuss the main application of derivatives of functions of 

several variables.  Namely, how do we use these derivatives to find extreme values.  

Let’s revisit two examples we looked at earlier, 
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The surface on the left is the graph of ( )2 2 4z x y= − + + , and the surface on the right 

is the graph of ( ) 4z x y= − + + .  It’s clear that both of these surfaces have a 

maximum point at ( )0,0,4 .  However, it’s also clear that we can’t define tangent lines 

at this point on the second surface since we have a sharp corner at that location.  

Consequently, neither z
x
∂
∂

 nor z
y
∂
∂

 exist at that point.  On the other hand, both partial 

derivatives exist at the point ( )0,0,4  on the graph of ( )2 2 4z x y= − + + , and both of 

our first partial derivatives will be zero at this point resulting in horizontal tangent 

lines that subsequently give rise to a horizontal tangent plane. 
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What we are seeing here is similar to what you saw in your first calculus course, and 

we now summarize the results below using the concept of the partial derivative. 

 

Definition:  Let ( ),a b  be a point contained in an open region R on which a function 

( ),z f x y=  is defined.  Then ( ),a b  is a critical point if either of the following 

conditions is true: 

1. ( ) ( ), 0 ,x yz a b z a b= =  

2. ( ),xz a b  does not exist 

3. ( ),yz a b  does not exist. 
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Theorem:  If ( ),z f x y=  has a relative maximum or a relative minimum at a point 

( ),a b  contained within an open region R on which ( ),z f x y=  is defined, then ( ),a b  

is a critical point. 

 

In other words, critical points are going to be points where either both first derivatives 

are zero or else one of the first derivatives fails to exist, and if we have a local 

extreme value, then it has to occur at a critical point.  Before we go over a test for 

helping us classify what type of critical point we have, let’s look at a very special 

kind of point called a saddle point.  The classic example of this is found in the graph 

of 2 2z x y= − .  For this function, we have 2xz x=  and 2yz y= − .  Furthermore, 

0 2 0 0
0 2 0 0

x

y

z x x
z y y
= ⎫ = =⎪⇒ ⇒⎬= − = =⎪⎭

.  Thus, ( )0,0  is a critical point.  However, if we look at the 

corresponding point, ( )0,0,0 , on our surface graph, then we easily see that it’s neither 

a maximum nor a minimum point. 
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Instead, what we see is that this point is at the bottom of one parabolic cross-section 

and at the top of another parabolic cross-section.  When we have a point like this 

which is a critical point, but movement in one direction causes z to increase while 

movement in another direction causes z to decrease, then we call the point on our 

surface a saddle point.  The terminology obviously derives from the saddle shape of 

the graph above.  Thus, when we try to classify the points on our surface 

corresponding to critical points ( ),a b , sometimes they will be relative maximum 

points, sometimes they will be relative minimum points, and sometimes the will be 

saddle points. 
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Below is a simple test that will allow us to classify most critical points we come 

across.  The proof of this theorem is rather messy, and it is usually left out of calculus 

books.  However, we’ll give a proof at the end of this chapter.  Nonetheless, feel free 

to skip it and move on if you wish. 

 

Second Partials Test:  Suppose ( ),z f x y=  has continuous second partial derivatives 

on an open region containing a point ( ),a b  such that ( ) ( ), 0 ,x yz a b z a b= = , and let 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

, ,
, , , ,

, ,
xx xy

xx yy xy yx
yx yy

z a b z a b
D z a b z a b z a b z a b

z a b z a b
= = − . 

Then: 

1. If 0D >  and ( ), 0xxz a b > , ( ),f a b  is a relative minimum. 

2. If 0D >  and ( ), 0xxz a b < , ( ),f a b  is a relative maximum. 

3. If 0D < , ( )( ), , ,a b f a b  is a saddle point. 

4. If 0D = , the test is inconclusive. 

 

Let’s start with a very simple example, 2 2( , )z f x y x y= = + .  If we take the first partial 

derivatives, we get 2xz x=  and 2yz y= .  Setting both of these equal to zero and 

solving for x and y yields, 

2 0 0
2 0 0

x x
y y
= =

⇒
= =
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Therefore, ( )0,0  is our critical point.  We now need to find our second partials matrix 

and evaluate its determinant at the critical point. 

2 0 2 0
(0,0) (2)(2) (0)(0) 4 0

0 2 0 2
xx xy

yx yy

z z
D

z z
⎛ ⎞ ⎛ ⎞

= ⇒ = = − = >⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

There are two things to notice here.  First, in our second partials matrix we found 

0xy yxz z= = .  Since we expect to find xy yxz z= , we’re probably right on track.  

Additionally, if these two second mixed partials were not equal to each other, then we 

should suspect that we’ve made an error.  The second important thing to notice is that 

(0,0) 4 0D = > .  This automatically means that we have either a local maximum or a 

local minimum.  To determine which, our second partials test tells us to look at the 

sign of xxz  at our critical point.  In this case, we have (0,0) 2 0xxz = > .  We can 

interpret this second derivative as meaning that a particular cross-section of our 

surface is concave-up at the critical point.  Therefore, the critical point is at the 

bottom of this cross-section, and the point ( ) ( )0,0, (0,0) 0,0,0f =  is a local minimum 

point. 

 

Now let’s look at ( ) 3 3, 3 3z f x y x x y y= = − + − .  The graph below suggests that there 

is one local maximum, one local minimum, and two saddle points.   
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We’ll find all the critical points, but apply our second partials test to just one of them 

as an example.  If we take our first partial derivatives, we get, 

( ) ( )( )

( ) ( )( )

2 2

2 2

3 3 3 1 3 1 1

3 3 3 1 3 1 1

x

y

z x x x x

z y y y y

= − = − = + −

= − = − = + −
 

Setting each partial derivative equal to zero results in, 

( )( )
( )( )

0 3 1 1 0 1,1
0 3 1 1 0 1,1

x

y

z x x x
z y y y
= ⎫ + − = = −⎪⇒ ⇒⎬= + − = = −⎪⎭

 

Therefore, our critical points are ( )1, 1− − , ( )1,1− , ( )1, 1− , and ( )1,1 .  Let’s do our 

second partials test just at the point ( )1,1−  to see what happens.  Setting up our 

second partials matrix and computing the value of ( 1,1)D − , we get, 

6 0 6 0
( 1,1) ( 6)(6) (0)(0) 36 0

0 6 0 6
xx xy

yx yy

z z x
D

z z y
⎛ ⎞ −⎛ ⎞

= ⇒ − = = − − = − <⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

And this is as far as we need to go.  Since ( 1,1) 0D − < , we automatically know from 

our second partials test that ( ) ( )1,1, ( 1,1) 1,1,0f− − = −  is a saddle point.  Also, a quick 

look at this point on our graph confirms this conclusion. 
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Now let’s look at just one more function, 4 4( , )z f x y x y= = + .  Taking first partial 

derivatives, we have 34xz x=  and 34yz y= .  Hence, our critical point is ( )0,0  since, 

3

3

0 4 0 0
0 04 0

x

y

z x x
z yy

= ⎫ = =⎪⇒ ⇒⎬= ==⎪⎭
 

If we now perform the second partials test, we get, 

2

2

12 0 0 0
(0,0) (0)(0) (0)(0) 0

0 00 12
xx xy

yx yy

z z x
D

z z y

⎛ ⎞⎛ ⎞
= ⇒ = = − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

Unfortunately, our second partials test tells us that the test is inconclusive if 0D = .  

However, a glance at the graph will confirm that the point ( )0,0,0  is a local minimum 

point. 
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We can also get confirmation by looking at the level curves for this function.  Below 

you can easily see the wagons circling tighter and tighter around the point ( )0,0 , and 

the z-values decrease as we approach the origin. 
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We now want to move on to another type of optimization problem, problems where 

are input values are restricted to some type of constraint curve.  These problems will 

involve a technique known as Lagrange multipliers.  To begin, consider the graph of 

a function ( , )z f x y=  below . 
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In looking at this graph, it appears that it is defined for all values of x and y, and that a 

local (and absolute) minimum will occur at the origin.  Now let’s add a curve to the 

xy-plane. 
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If we restrict our input values just to the points on this curve, then, graphically, the 

result will be a corresponding curve that lies on our surface. 

 

We can see that, with this restricted input, we now have our minimum point residing 

at a different location.  However, what is also (hopefully) obvious is that there is 

going to be a contour curve on the surface that touches our surface curve right at this 

minimum point. 
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If we now move this contour curve down to the xy-plane, then it will also touch our 

constraint curve at a single point. 

 

In other words, the constraint curve in the xy-plane and the level curve in the xy-plane 

are tangent to one another, and thus, they have a common tangent line. 
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Now, what does this all mean to us?  It means this.  Suppose our we consider our 

constraint curve as just a level curve for some other function ( , )g x y .  Then as we can 

see above, there is a level curve for ( , )f x y  such that ( , )f x y  and ( , )g x y  have a 

common tangent line at the point in the xy-plan that corresponds to the minimum 

point of the curve on our surface graph.  However, recall that a gradient vector 

evaluated at a point is normal to the level curve at that point.  Hence, it follows that, 

at this point of tangency, f∇  is parallel to g∇ .  Recall, too, that two vectors are 

parallel if and only if one is a scalar multiple of the other.  If we denote this scalar by 

the Greek letter lambda, λ , then we get f gλ∇ = ∇ .  At the partial derivative level we 

write this as x xf gλ=  and y yf gλ= .  This number λ  is what is known as a Lagrange 
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multiplier, named after the great mathematician Joseph Lagrange who discovered this 

technique.  At this point, though, if we add the constraint equation, written as 

( , )g x y c= , to the other two, then we arrive at the following system that we need to 

solve for x, y, and λ  in order to find our extreme point.  In other words, solve the 

system below, and you’re done! 

( , )

x x

y y

f g
f g

g x y c

λ
λ

=

=

=

 

Of course, solving this system is sometimes easier said than done, but let’s take a 

simple example.  Suppose 2 2( , )z f x y x y= = +  and our constraint curve is the graph of 

2 4y x− = .  Then we can think of our constraint curve as a level curve for the function 

2( , )g x y y x= − .  We now have the following equations to play around with. 

2

2 2
2

( , ) 4

x x

y y

f g x x
f g y

g x y c y x

λ λ
λ λ

= = −⎫
⎪= ⇒ =⎬
⎪= − =⎭

 

From the first equation we get that either 0x =  or 1λ = − .  If 0x = , then substitution 

into the last equation tells us that 4y = .  On the other hand, if 1λ = − , then 

substitution into the second equation tells us that 1
2

y = − .  If we plug this value into 

the third equation, we get 2 2 21 9 94
2 2 2

x x x− − = ⇒ − = ⇒ = − .  This, however, can’t 

happen since for any real number 2 0x ≥ .  Hence, our minimum value occurs when 
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0x =  and 4y = , and the coordinates of our minimum point are ( )0,4,16 .  And it’s just 

that simple!  Of course, once you understand the method of Lagrange multipliers, the 

method is simple, but it’s solving the actual equations that often times gets very 

difficult.  The problem is that our equations are often nonlinear, and methods that 

work well on one problem may not help at all on another. 

 

Here’s an example that involves a function of three variables.  The method of 

Lagrange multipliers is, nonetheless, the same.  We just have to set up an additional 

equation for the extra variable. 

 

Problem:  Use Lagrange multipliers to find the minimum distance between the point 

( )1,2,3  and the plane 4 5 6 20x y z+ + = .   

 

Solution:  We’ll let the equation for our plane, 4 5 6 20x y z+ + = , be our constraint, 

and we’ll set 2 2 2( , ) ( 1) ( 2) ( 3)z f x y x y z= = − + − + − .  Basically, we’re setting ( , )f x y  

equal to the square of the distance between the point ( )1,2,3  and another point 

( ), ,x y z .  Certainly, if we can minimize the square of the distance, then we’ve also 

found the solution to the minimal distance.  However, by working with the square of 

the distance, the derivative process will be simpler.  And finally, we’ll set 
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( , ) 4 5 6g x y x y z= + +  so that 4 5 6 20x y z+ + =  can be thought of as a level surface for 

this function.  Now let’s find some derivatives! 

2( 1) 2 2
4

2( 2) 2 4

5

2( 3) 2 6
6

x

x

y

y

z

z

f x x
g

f y y

g

f z z
g

= − = −

=

= − = −

=

= − = −
=

 

 

From these derivatives, we apply lagrange multipliers to get the following equations, 

2 2 4
2 4 5
2 6 6

x
y
z

λ
λ
λ

− =
− =
− =

 

 

If we solve these equations for x, y, and z, then we get, 

4 2
2

5 4
2

6 6
2

x

y

z

λ

λ

λ

+
=

+
=

+
=

 

 

We can now substitute these expressions for our variables in our constraint equation, 

and this will allow us to solve for λ . 
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4 2 5 4 6 64 5 6 4 5 6 20
2 2 2

16 8 25 20 36 36 40
77 24

24
77

x y z λ λ λ

λ λ λ
λ

λ

+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + = + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⇒ + + + + + =
⇒ = −

⇒ = −

 

 

Hence, 

4 2 59
2 77

5 4 94
2 77

6 6 159
2 77

x

y

z

λ

λ

λ

+
= =

+
= =

+
= =

 

 

Thus, the point 29 94 159, ,
77 77 77

⎛ ⎞
⎜ ⎟
⎝ ⎠

 should be the point on the plane 4 5 6 20x y z+ + =  that is 

closest to the point ( )1,2,3 .  Let’s do a little check, though, before we compute the 

minimum distance.  First to verify that 29 94 159, ,
77 77 77

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is in the plane, note that 

29 94 159 116 470 954 15404 5 6 20
77 77 77 77 77 77 77

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + = + + = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.  Second, it’s obvious that if 

the line segment from ( )1,2,3  to 29 94 159, ,
77 77 77

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the shortest distance 

between the point ( )1,2,3  and the plane 4 5 6 20x y z+ + = , then this line segment 

should be perpendicular to our plane.  Let’s do a check of this both algebraically and 
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visually.  We already know one vector perpendicular to our plane, the one we obtain 

from the coefficients of x, y, and z.  In other words, ˆˆ ˆ4 5 6v i j k= + + .  Parametric 

equations for the line that passes through 29 94 159, ,
77 77 77

⎛ ⎞
⎜ ⎟
⎝ ⎠

 in the direction of this vector 

are, 

29 4
77
94 5
77
159 6
77

x t

y t

z t

t

= +

= +

= +

−∞ < < ∞

 

 

Now let’s see what value of t will make x equal to 1. 

29 29 48 124 1 4 1
77 77 77 77

t t t+ = ⇒ = − = ⇒ =  

 

If we set 12
77

t =  and find the corresponding values for y and z, then this will show that 

the point ( )1,2,3  is on the line that passes through 29 94 159, ,
77 77 77

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and is perpendicular 

to the plane 4 5 6 20x y z+ + = . 
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29 12 774 1
77 77 77
94 12 1545 2
77 77 77
159 12 2316 3
77 77 77

x

y

z

⎛ ⎞= + = =⎜ ⎟
⎝ ⎠
⎛ ⎞= + = =⎜ ⎟
⎝ ⎠
⎛ ⎞= + = =⎜ ⎟
⎝ ⎠

 

 

Now, for good measure, let’s get some visual confirmation. 

 

Looks confirmed to me!  The minimum distance is now 

2 2 229 94 159 2304 3600 5184 1441 2 3
77 77 77 5929 5929 5929 77

12 12 77 1.3675
7777

d ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + − = + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = ≈

 

 

At the start of this section on Lagrange multipliers, we gave a rather visual proof of 

why it would work for functions of the form ( ),z f x y= .  We would like to give an 

alternate proof now that is another example of how the chain rule is frequently 

important in proving theorems in multivariable calculus. 
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Theorem:  Let ( , )f x y  and ( , )g x y  have continuous first partial derivatives, and 

suppose that ( , )f x y  has an extreme value at the interior point ( )0 0,x y  on a smooth 

constraint curve represented by ( , )g x y c= .  If 0 0( , ) 0g x y∇ ≠ , then there is a real 

number λ  such that 0 0 0 0( , ) ( , )f x y g x yλ∇ = ∇ . 

 

Proof:  Let ˆ ˆ ( ) ( ) ( )r t x t i y t j= +  be a smooth parametrization for the constraint curve, 

and suppose 0 0 0 0( , ) ( ( ), ( ))f x y f x t y t=  is an extreme value.  Then since ( , )f x y  is 

differentiable along this curve, ( , )0 df x y f dx f dy drf
dt x dt y dt dt

∂ ∂
= = + = ∇

∂ ∂
i  when the 

derivatives are evaluated at 0t t= .  Therefore, 0 0 0f ( , ) ( )x y r t′∇ ⊥ .  But since ( )r t  is a 

level curve for ( , )w g x y= , 0 0g ( , )x y∇  is also perpendicular to 0( )r t′ .  Therefore, 

0 0 0 0 0 0 0 0f ( , ) ( , ) f ( , ) ( , )x y g x y x y g x yλ∇ ∇ ⇒∇ = ∇ .   ■ 

 

So, that’s it for now for Lagrange multipliers, and we’re just about through with 

derivatives.  There’s just one more thing left to look at, the dreaded proof of the 

second partials test, so here goes.  Gird your loins, and get ready for the ride! 
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Theorem (Second Partials Test):  Suppose ( ),a b  is a point such that 

( , ) 0 ( , )x yf a b f a b= = , and let 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 , ,
, , , ,

, ,
xx xy

xx yy xy
xy yy

f a b f a b
D D a b f a b f a b f a b

f a b f a b
⎡ ⎤= = − =⎣ ⎦ . 

1. If 0D >  and ( ), 0xxf a b > , then ( ),f a b  is a local minimum. 

2. If 0D >  and ( ), 0xxf a b < , then ( ),f a b  is a local maximum. 

3. If 0D < , then ( ), , ( , )a b f a b  is a saddle point. 

4. If 0D = , then we know nothing. 

 

Proof:  Let 
2

( , ) ( , ) ( , ) ( , )xx yy xyD a b f a b f a b f a b⎡ ⎤= ⋅ − ⎣ ⎦ .  Notice that, for the sake of 

simplicity, in the statement and execution of this proof we are assuming the equality 

of the two mixed partials, xy yxf f= .  Also, we will abbreviate the above equality as 

2
xx yy xyD f f f= − .  Additionally, we will assume that every expression we write down 

is being evaluated at the point ( ),a b .  Since all directional derivatives at this point 

will have the value zero, our strategy will be to look at concavity as determined by 

the sign of the second derivative in order to decide whether ( ), , ( , )a b f a b  is a 

maximum point, a minimum point, or a saddle point.   
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Now let ˆ ˆu hi kj= +  be a unit vector.  Then u x yD f f u f h f k= ∇ = +i .  Also, 

( ) ( ) ( ) ( )2 ˆ ˆ ˆ ˆ
u u u u xx yx xy yyD f D D f D f u f h f k i f h f k j hi kj⎡ ⎤ ⎡ ⎤= = ∇ = + + + +⎣ ⎦⎣ ⎦i i  

2 2 2 22xx yx xy yy xx xy yyf h f hk f hk f k f h f hk f k= + + + = + + .  We can rewrite this last 

expression by completing the square. 

( )

2 2 2 2 2

2 2 2
2 2

2 2
2

2
2

2

xy
u xx xy yy xx yy

xx

xy xy xy
xx yy

xx xx xx

xy
xx xx yy xy

xx xx

f
D f f h f hk f k f h hk f k

f

f f k f k
f h hk f k

f f f

f k kf h f f f
f f

⎛ ⎞
= + + = + +⎜ ⎟

⎝ ⎠
⎛ ⎞⎡ ⎤⎜ ⎟= + + + −⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠

 

 

Thus, ( )
2 2

2 2xy
u xx xx yy xy

xx xx

f k kD f f h f f f
f f

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
.  Consequently, if 2 0xx yy xyD f f f= − >  

and 0xxf > , then 2 0uD f >  for all unit vectors u .  Thus, any plane that passes through 

( , )z f x y=  and contains the point ( ), , ( , )a b f a b  and is perpendicular to the xy-plane 

will result in a cross-section with ( , )z f x y=  that is concave up.  Therefore, 

( ), , ( , )a b f a b  is a minimum point.  If 2 0xx yy xyD f f f= − >  and  0xxf < , then 2 0uD f <  

for all unit vectors u , and the argument is similar that ( ), , ( , )a b f a b  is a maximum 

point. 
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Now suppose that 2 0xx yy xyD f f f= − < , and recall that 2 2 22u xx xy yyD f f h f hk f k= + + .  

Suppose 0xxf ≠ , and note that 

( )2 2 2 2 2 22 2xx u xx xx xy yy xx xx yy xx yyf D f f f h f hk f k f h f f hk f f k= + + = + +  

( ) ( )22 2 22 22 22 22 xxx xx xy xx yy xxx xy xy x y xyy yff h f f hk f f k f h f k f ff k f kk= + + = + + −+ − .  

Hence, 2 0xx uf D f >  when 0h ≠  and 0k = , and 2 0xx uf D f <  when 0xx xyf h f k+ =  and 

0k ≠ .  This implies that 2
uD f  is positive in one direction and negative in another, 

thus implying that the graph of ( , )z f x y=  is concave-up in one direction at 

( ), , ( , )a b f a b  and concave-down in another direction.  Therefore, ( ), , ( , )a b f a b  is a 

saddle point.  Also, if 0yyf ≠ , then a similar argument may be used to arrive at the 

same conclusion that ( ), , ( , )a b f a b  is a saddle point.  One may ask, though, in the 

argument above how it is that we know that we can have both 0xx xyf h f k+ =  and 

0k ≠ .  Well, if 0k ≠ , then 0 xy
xx xy

xx

fhf h f k
k f

+ = ⇒ = − .  However, since ( ),h k  is a 

point on the unit circle, we have that coth
k

θ=  where θ  is the angle made with the 

positive x-axis.  Furthermore, since cotθ  takes on every real number value as θ  goes 

from 0  to 2π , it certainly, at some point, takes on the value xy

xx

f
f

− .  And from this we 

get that 0xx xyf h f k+ = . 
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Now, suppose again that 2 0xx yy xyD f f f= − < , and recall that 

2 2 22u xx xy yyD f f h f hk f k= + + .  If 0xx yyf f= = , then 2 2 22u xx xy yyD f f h f hk f k= + +  

reduces to 2 2u xyD f f hk=  and 2 0xyD f= − < .  Hence, 0xyf ≠ , and 2
uD f  will have 

different signs for the unit vectors 1
1 1ˆ ˆ
2 2

u i j= +  and 2
1 1ˆ ˆ
2 2

u i j= − .  Therefore, 

( ), , ( , )a b f a b  is a saddle point. 

 

The final thing we need to show is that if 0D = , then the test is inconclusive.  This 

can be done simply by examining the graphs of 4 4z x y= + , 4 4z x y= − − , and 

4 4z x y= − .  You can easily show that each of these functions has ( )0,0  as a critical 

point, and each function results in 0D = .  However, the graph of the first function 

displays a local minimum at the critical point, the graph of the second shows a local 

maximum, and the third graph has a saddle point at ( )0,0 .  Thus, these three 

examples show that anything can happen when 0D = . 

 

By golly, I think we’re done!   ■ 


