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CHAPTER 8   

INTEGRALS 

 

You’ll undoubtedly recall that you first learned about integrals by trying to figure out 

how to find the area under a curve.   

 

 

The strategy was to subdivide our interval from a to b into a series of n subintervals 

of width b ax
n
−

Δ = , evaluate our function at a point in each subinterval in order to get 

a height for a rectangle, add up the areas of the rectangles, and use that as an 

approximation for the area under the curve.  Our expectation, of course was that as 
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the number of subintervals increase, the approximation would get better and better.  

Thus, for the case in which we had ( ) 0f x ≥ , we wrote 

0
( ) lim ( ) lim ( )

b

n x
a

Area f x dx f x x f x x
→∞ Δ →

= = ⋅Δ = ⋅Δ∑ ∑∫  

And to help with computational matters, we soon discovered two versions of the 

Fundamental Theorem of Calculus. 

 

The Fundamental Theorem of Calculus:  Let ( )y f x=  be continuous on the interval 

a x b≤ ≤ .  Then, 

1. (The Derivative of the Integral)  If ( ) ( )
x

a

A x f u du= ∫ , then ( )dA f x
dx

= . 

2. (The Integral of the Derivative)  If ( )F x  is any antiderivative of ( )f x , then 

( ) ( ) ( )
b

a

f x dx F b F a= −∫ . 

 

As a consequence of this theorem, evaluating integrals boiled down to an often simple 

process of finding antiderivatives of familiar functions, and much of single variable 

calculus is devoted to the abstract art of finding such antiderivatives.  Nonetheless, 

one also encounters more applied problems such as this one. 
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Problem:  Suppose you are driving down a highway, and your speed fluctuates in 

such a way that at time t hours, your speed is ( ) 55 2cos( ) milesf t t
hour

= + .  Find the 

distance you have traveled after 5 hours. 

 

The apparently tricky thing in this problem is that our speed is variable.  In fact, over 

time your speed will drift from a low of 53 miles per hour to 57 miles per hour.  

However, in the diagram below, we try to approximate the area under the curves 

using rectangles. 
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What becomes apparent from these rectangles is that since we are using a constant 

speed for the height of each rectangle, that means that we can use our familiar 

distance rate time= ×  formula to get the distance traveled over each subinterval.  

Furthermore, this distance corresponds to the area of the related rectangle.  And 

additionally, it’s easy to see that if we increase the number of rectangles, then we get 

a better approximation for the actual distance traveled when our speed is variable.  

However, increasing the number of rectangles also results in a better approximation 

of the area under the curve.  Consequently, we can conclude that when we have a 

variable speed given by a function ( )f t  on an interval a t b≤ ≤ , then the distance 

traveled is given by ( )
b

a

f t dt∫ .  There is, however, one more important thing we can 

learn from this example, and that is how we deal with units in most integrals related 

to the real world.  If we write in the units associated with ( )f t and t, then we can 

express our integral as follows. 

( )0 0
lim ( ) lim ( ) ( )

b

t t
a

miles milesf t t hours f t t hours f t dt hours
hour hourΔ → Δ →

⋅Δ = ⋅Δ =∑ ∑ ∫  

In other words, when units are involved, we can write the units on our integral as the 

product of the units on our function with the units on our input variable. 

 

If we now have a function of two variables such as ( , )z f x y= , we can define 

integrals in a similar way.  In particular, suppose 2 2( , ) ( 2) ( 2) 3z f x y x y= = − + − + , 
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0 4x≤ ≤ , and 0 4y≤ ≤ .  Suppose also that the units of feet are attached to all three 

variables, x, y, and z.  In this case, the expression ( , )f x y x yΔ Δ∑  will give us an 

approximation of the volume beneath our surface and above the xy-plane.  

Furthermore, if we multiply the output units by both of the input units, then we get 

units of cubic feet for our approximation.  Additionally, in the above formula, since 

x yΔ Δ  is going to represent an element of area in the xy-plane, we often represent this 

area by AΔ .  And finally, if we take the limit of the above expression as both xΔ  and 

yΔ  go to zero, then our volume approximation converges to the exact volume, and we 

call the result of such a limit a double integral since we have two input variables.  We 

often write it like this, 

, 0
( , ) lim ( , )

R x y
f x y dA f x y A

Δ Δ →
= Δ∑∫∫  

In this formula, R is used to represent the region in the xy-plane that we are 

integrating over.  The picture below uses 2 2( , ) ( 2) ( 2) 3z f x y x y= = − + − + , 0 4x≤ ≤ , 

and 0 4y≤ ≤ , and it illustrates much of what we are talking about. 
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The grid in the xy-plane has the x-interval subdivided into four equal subintervals, and 

the y-interval is likewise subdivided into four subintervals.  That gives a grid that 

contains sixteen rectangles total.  Also, you see that if you plot the points 

( ), , ( , )x y f x y  above the corner points of each of our rectangles and if you then 

connected the dots, then you will get a graph that approximates the surface graph for  

2 2( , ) ( 2) ( 2) 3z f x y x y= = − + − + .  Now suppose that for each of our sixteen rectangles 

we take the corner point with the smallest values for x and y and we use the 

corresponding z-value as the height of a box that we erect over our rectangle.  Then 

the sum of the volume of the boxes will approximate the volume under our surface 

and above the xy-plane.  Furthermore, as we take finer and finer subdivisions of both 

our x-interval and our y-interval, we get not only better approximations for the 
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volume, but also a graph that better approximates our actual surface.  Below is the 

grid and graph that results from subdividing each interval into eight parts, and this is 

followed by a picture where each side of the grid is subdivided into sixteen parts.  As 

you can see, this improves the quality of the graph, and it will also improve any 

volume approximations. 

 

 

The question we want to address now concerns how we go about actually evaluating 

, 0
( , ) lim ( , )

R x y
f x y dA f x y A

Δ Δ →
= Δ∑∫∫ .  The answer, fortunately, is given by a result 

known as Fubini’s Theorem.  When I was a sophomore in college taking 

multivariable calculus for the first time, my teacher described Fubini’s Theorem as 

saying that if you are doing integration of functions of several variables and you get 

any answer at all, then it must be right!  Well, Fubini’s Theorem is not that generous, 

but close! 
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Fubini’s Theorem:  If ( , )z f x y=  is continuous on the rectangle 

{ }( , ) : ,R x y a x b c y d= ≤ ≤ ≤ ≤ , then ( , ) ( , ) ( , )
b d d b

R
a c c a

f x y dA f x y dydx f x y dxdy= =∫∫ ∫ ∫ ∫ ∫ . 

 

These last two integrals are called iterated integrals, and it simply means that you first 

evaluate the inner integral, and then you take that result and integrate again.  What 

Fubini’s Theorem then tells us is that it doesn’t matter whether you integrate first 

with respect to x or first with respect to y.  The end result will be the same.  Also, just 

as we treat other variables as constants when we differentiate with respect to x, we do 

the same when integrating with respect to x.  In other words, whenever you integrate 

with respect to one particular variable, you always treat the other variables as 

constants.  Now let’s use 2 2( , ) ( 2) ( 2) 3z f x y x y= = − + − + , 0 4x≤ ≤ , and 0 4y≤ ≤  as 

an example.  We’ll find the volume under the surface in two ways, first by integrating 

with respect to y and then x, and then by doing the opposite order.  Also, since both x 

and y vary from 0 to 4, we’ll have the same limits of integration on both integrals 

both times.  Here we go! 

 

44 4 4 3
2 2 2

0 0 0 0
44 3

2

0 0

( 2)( , ) ( 2) ( 2) 3 ( 2) 3
3

8 4( 2) 8 32 32 208( 2) 4 12 12 48
3 3 3 3 3 3

R

yf x y dA x y dydx x y y dx

x xx dx x

⎡ ⎤−⎡ ⎤= − + − + = − + +⎢ ⎥⎣ ⎦
⎣ ⎦

−⎡ ⎤= − + + = + + = + + =⎢ ⎥⎣ ⎦

∫∫ ∫ ∫ ∫

∫
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Similarly, 

44 4 4 3
2 2 2

0 0 0 0
44 3

2

0 0

( 2)( , ) ( 2) ( 2) 3 ( 2) 3
3

8 8 4( 2) 32 32 208( 2) 4 12 12 48
3 3 3 3 3 3

R

xf x y dA x y dxdy y x x dx

y yy dy y

⎡ ⎤−⎡ ⎤= − + − + = + − +⎢ ⎥⎣ ⎦
⎣ ⎦

−⎡ ⎤= + − + = + + = + + =⎢ ⎥⎣ ⎦

∫∫ ∫ ∫ ∫

∫
 

 

We get the same result no matter what order we do our integration in, and that’s 

exactly what Fubini’s Theorem says ought to happen.  Now let’s look at a proof of 

sorts.  It’s not a full-blown, fully accurate proof.  Instead, it’s more of an outline of 

how the proof goes with the messier details omitted.  Thus, I’ll just call it an 

argument.  The argument depends, though, on familiar properties of real numbers 

such as the commutative property of addition.  In other words, when we are adding 

together the terms of the sum ( , ) ( , )f x y A f x y y xΔ = Δ Δ∑ ∑ , we can add those terms 

up in any order we want.  And as we take limits as , 0x yΔ Δ → , this will result in 

different integral expressions that, nonetheless, give us the same overall result.  

Throughout I try to avoid cluttering up my expressions with subscripts, but I will use i 

to represent the thi  subinterval along the x-axis and j to represent the thj  subinterval 

along the y-axis.  Here goes! 
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Argument:  As any idiot can plainly see, 

,

( , ) ( , ) ( , ) ( , )
R

i j i j j i

f x y dA f x y A f x y y x f x y x y
⎛ ⎞ ⎛ ⎞

≈ Δ = Δ Δ = Δ Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑∫∫  

Thus, 

, 0 0 0
,

( , ) lim ( , ) lim lim ( , ) ( , )
b d

R x y x y
i j i j a c

f x y dA f x y A f x y y x f x y dy dx
Δ Δ → Δ → Δ →

⎛ ⎞⎛ ⎞
= Δ = Δ Δ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑∫∫ ∫ ∫  

Similarly, 

, 0 0 0
,

( , ) lim ( , ) lim lim ( , ) ( , )
d b

R x y y x
i j j y c a

f x y dA f x y A f x y x y f x y dx dy
Δ Δ → Δ → Δ →

⎛ ⎞⎛ ⎞
= Δ = Δ Δ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑∫∫ ∫ ∫  

Consequently, 

( , ) ( , ) ( , )
b d d b

R
a c c a

f x y dA f x y dydx f x y dxdy= =∫∫ ∫ ∫ ∫ ∫      ■ 

 

And now, here’s another example of Fubini’s Theorem in practice. 

4 11 4 1 1 13 2
2

0 2 0 0 0 02

64 8 56 28 28 0 28
3 3 3 3 3 3 3 3

xy x x x xxy dydx dx dx dx
⎛ ⎞ ⎛ ⎞= = − = = = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫ ∫ ∫ ∫ ∫  

 

Likewise, 

1 44 1 4 4 42 2 2 2 3
2

2 0 2 2 2 20

0 64 8 56 28
2 2 2 2 6 6 6 6 3

x y y y yxy dxdy dy dy dy
⎛ ⎞ ⎛ ⎞

= = − = = = − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫ ∫  
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Often times we change the order of integration simply because the integral is 

impossible for us to do by hand in one order, but very easy in the other.  Here’s one 

such example.  We start with 
6 2

3

0 3

1
x

x y dydx+∫ ∫ .  Well, I’m sorry, but I don’t know an 

antiderivative, with respect to y, for 3 1x y + .  Hence, let’s see if we can rewrite this 

so that we integrate with respect to x first.  If we do, however, then we’ll generally 

also need to make some adjustments to our limits of integration.  Now the limits we 

have on these integrals tell us that, 

0 6 and

2
3

x
x y

≤ ≤

≤ ≤
 

If we graph this region, we get something like the following. 

 

What we need to do is express this same region in terms of inequalities such that this 

time y varies from one number to another and x varies from one function of y to 

another function of y.  By doing this, we will determine our limits of integration for 

the new integral.  Well, it’s pretty clear (hopefully!) that we want 0 2y≤ ≤ .  Also, if 

we take our equation for the diagonal line, 
3
xy = , and solve it for x, we get 3x y= .  
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Therefore, our second inequality should be 0 3x y≤ ≤ .  Hence, the new integral is 

32
3

0 0

1
y

x y dxdy+∫ ∫ , and this one is pretty easy to do. 

 

332 2 2 92 3 2 3 1 2
3

0 0 0 0 10
3 2 3 2

1 9 1 31
2 2 2

9 1 27 1 26

yy x y y y ux y dxdy dy dy du
+ +

+ = = =

= − = − =

∫ ∫ ∫ ∫ ∫  

 

Another way we can use double integrals is to find areas.  To do this, just think of 

your integrand as being ( , ) 1f x y = .  In other words, if you have a solid whose base is 

some region R, but the height of that solid is 1, then the volume will numerically be 

the same as the area of the base.  That’s what we’re doing here! 

 

Example 1:  Use a double integral to find the area of the region between the curves 

2y x=  and 3y x=  from 0x =  to 1x = . 

 

Solution:  On this interval, the value of 2x  will be greater than that of 3x .  Thus, our 

function and intervals for x and y are, 

3 2

( , ) 1
0 1
z f x y

x

x y x

= =
≤ ≤

≤ ≤

 

Also, here is a picture of the region R whose area we want to find, 
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Now all we need to do is evaluate the integral. 

( )
2

2

3 3

11 1 1 3 2
3 2

0 0 0 0
3 2

1 1 0 0 4 3 1
3 2 3 4 12 12 12

xx

R
x x

x xArea dA dydx y dx x x dx
⎛ ⎞

= = = = − = −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= − − − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫∫ ∫ ∫ ∫ ∫
 

 

We can also reverse the order of integration here and integrate first with respect to x.  

If we do that, then we have to find a numerical interval over which y varies and a pair 

of functions of y that x will lie between.  In this case, it looks like we want 0 1y≤ ≤  

and 3y x y≤ ≤ .  Thus, 

( )
33 11 1 1 4 3 3 2

1 3 1 2

0 0 0 0

3 2
4 3

3 2 0 0 9 8 1
4 3 4 3 12 12 12

yy

R
y y

y yArea dA dxdy x dy y y dy
⎛ ⎞

= = = = − = −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= − − − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫∫ ∫ ∫ ∫ ∫
 

And we get the same answer!  Exactly as Fubini’s Theorem predicts. 
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Another application of double integrals is to compute surface area.  For example, let’s 

take a function we looked at earlier, 2 2( , ) ( 2) ( 2) 3z f x y x y= = − + − +  with 0 4x≤ ≤  

and 0 4y≤ ≤ .  If we look closely at the wireframe graph below, we might notice that 

above each rectangle in our region R in the xy-plane there lies a corresponding 

parallelogram whose area approximates the surface area above that rectangle. 

 

If we find the areas of these parallelograms and add them up, then the sum will 

approximate the area of our surface.  Furthermore, as we partition our region R into 

smaller and smaller subrectangles, our approximation of the surface area should 

become more accurate.  The question now is how do we find the areas of our 

parallelograms?  And the answer is, vectors!  Recall that if a have a parallelogram 

defined by two vectors u  and v , then the area of that parallelogram is given by 
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u v× .  Below is our wireframe drawing again, but this time with two vectors added 

to one of the parallelograms on the surface. 

 

 

 

 

 

 

 

 

 

 

If we designate, on our rectangle in the xy-plane, the corner point with the smallest 

coordinates as ( ),x y , then the two adjacent corner points will have coordinates 

( ),x x y+ Δ  and ( ),x y y+ Δ .  Thus, I claim we can define our vectors u  and v  as 

ˆˆ ˆ0 fu xi j x k
x
∂

≈ Δ + + Δ
∂

 and ˆˆ ˆ0 fv i y j y k
y
∂

≈ + Δ + Δ
∂

.  Now the question is how do we get 

this?  Well, let’s answer for the vector u  by looking at a typical diagram below. 
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In this diagram, our vector u  lies in a plane parallel to the xz-plane, and hence, as we 

traverse the length of u  there is a change in x and a change in z, but no change in y.  

Also, notice that ˆˆu xi z k= Δ + Δ  and that the slope of u  is z
x

Δ
Δ

.  Realize, too, that if xΔ  

is small, then u  will approximate a tangent vector at ( ), ,x y z  pointing in the direction 

of the positive x-axis, and thus, it’s slope is also approximately equal to f
x
∂
∂

 evaluated 

at ( ), ,x y z .  Hence, we get that z f fz x
x x x

Δ ∂ ∂
≈ ⇒ Δ ≈ Δ

Δ ∂ ∂
, and ˆˆ ˆ0 fu xi j x k

x
∂

≈ Δ + + Δ
∂

.  A 

similar argument with respect to y shows that ˆˆ ˆ0 fv i y j y k
y
∂

≈ + Δ + Δ
∂

, and both of these 

approximations improve as , 0x yΔ Δ → .  Consequently, 

( )

ˆˆ ˆ

ˆˆ ˆ0

0

i j k
f f fu v x x x y i x y j x y k
x x y
fy y
y

⎛ ⎞∂ ∂ ∂⎛ ⎞× ≈ Δ Δ = − Δ Δ − Δ Δ + Δ Δ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂

Δ Δ
∂

 

xΔ

zΔ
u

xΔ

zΔ
u

( ), ,x y z
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And, 

2 22 2
2 2 2 2 2 2 1f f f fu v x y x y x y x y

x y x y
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞× ≈ Δ Δ + Δ Δ + Δ Δ = + + ⋅Δ Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Therefore, 

22

, 0
,

2 22 2

lim 1

1 1

x y
i j

R R

f fSurface Area x y
x y

f f f fdxdy dA
x y x y

Δ Δ →

⎛ ⎞∂ ∂⎛ ⎞= + + ⋅Δ Δ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟= + + = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

∫∫ ∫∫
 

Also, if we let S denote the surface we are integrating over, and if we denote an 

element of area on the surface by SΔ , then what we’ve also shown above is that 

22

1f fS A
x y

⎛ ⎞∂ ∂⎛ ⎞Δ ≈ + + ⋅Δ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
, and hence, 

22

1
S R

f fSurface Area dS dA
x y

⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞⎜ ⎟= = + +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
∫∫ ∫∫  

Consequently, we’re really turning a double integral over a surface S into a more 

manageable double integral over a region R in the plane.  Additionally, remember the 

formula 
22

1f fdS dA
x y

⎛ ⎞∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 because we’ll see it again in the chapter on 

Green’s Theorem, Stokes’ Theorem, and the Divergence TheoremI. 
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Finally, we have a very nice formula for surface area!  Unfortunately, in practice this 

often leads to something that is hard to integrate, and that will be the case with 

2 2( , ) ( 2) ( 2) 3z f x y x y= = − + − +  with 0 4x≤ ≤  and 0 4y≤ ≤ .  In this instance,  

2 2

2 2

2( 2) 2 4
2( 2) 2 4

4 16 16

4 16 16

x

y

x

y

z x x
z y y

z x x

z y y

= − = −

= − = −

= − +

= − +

 

Hence, 

2 24 4 16 16 33
R

Surface Area x y x y dA= + − − +∫∫  

Have fun doing that one!  Often times with integrals such as these we have to 

evaluate them numerically.  However, later in this chapter we’ll see how to do a 

similar integral by making a change of variables.  In fact, the only reason we’re not 

going to do it at this point is because our region R doesn’t have the appropriate shape 

for the kind of change we have in mind.  For now, though, take it on faith that if I 

plug the above integral into MAPLE software and ask for a numerical approximation 

of the answer, then I get back that the surface area is approximately 52 square units.  

Close enough for government work! 

 

We should probably do at least one example that does lead to something we can 

integrate, so let’s try this one. 
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Example 2:  Find the surface area of the plane defined by 2 3z x y= +  where 0 5x≤ ≤  

and 0 4y≤ ≤ . 

 

Solution:  The necessary partial derivative computations are, 

2

2

2 4

3 9
x x

y y

z z

z z

= ⇒ =

= ⇒ =
 

Thus,  

45 4 5 5 5

0
0 0 0 00

14 14 4 14 4 14 20 14 74.833Surface Area dydx y dx dx x= = = = = ≈∫ ∫ ∫ ∫  

We can verify this result by taking the vectors u  and v  that define this parallelogram 

portion of the plane, and then calculate u v× .  Thus, ˆˆ5 10u i k= +  and ˆˆ4 12v j k= + . 
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Hence, 

ˆˆ ˆ
ˆˆ ˆ5 0 10 40 60 20

0 4 12

i j k
u v i j k× = = − − +  

And, 

1600 3600 400 5600 400 14 20 14 74.833u v× = + + = = ⋅ = ≈  

I love it when things work out! 

 

We now want to look at a very different application of double integrals, but first we 

need to define what we mean by a probability density function (also called a 

probability distribution function).  If we are dealing with a function of one variable, 

( )p p x= , then this function could be a probability density function if the following 

two conditions are met, 

1. ( ) 0 for all p x x≥  

2. ( ) 1p x dx
∞

−∞

=∫  

The most widely known example of a probability density function of one variable is 

the one that gives rise to the bell-shaped curve known as the normal curve or normal 

distribution.  It’s defined by 
21

21( )
2

x

p x e
μ

σ

σ π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠=  where μ  is the mean or average 
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value of the distribution and σ  is the standard deviation, a measure of how spread out 

the values of the distribution are.  A typical normal curve looks like the following. 

 

 

 

 

 

 

 

 

 

Also, as this picture suggests, we find probabilities in a probability density function 

by calculating the area under the curve.  Thus, for example, in the normal distribution 

above there is a 34.1% chance that a score will fall between the mean and one 

standard deviation above the mean, and there is a 13.6% chance a score will be 

between μ σ+  and 2μ σ+ . 

 

When two variables are involved, a probability density function is also called a joint 

density function, and the two conditions a function ( , )p x y  must follow in order to be 

a joint density function are, 

 

34.1%34.1%
13.6%13.6%

2μ σ+2μ σ−
μ σ+μ σ−

μ

34.1%34.1%
13.6%13.6%

2μ σ+2μ σ−
μ σ+μ σ−

μ
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1. ( , ) 0 for all and p x y x y≥  

2. ( , ) 1p x y dydx
∞ ∞

−∞ −∞

=∫ ∫  

Given that we have a joint density function, to find the probability that a x b≤ ≤  and 

c y d≤ ≤ m we evaluate ( , ) ( , )
b d

a c

P a x b c y d p x y dydx≤ ≤ ≤ ≤ = ∫ ∫ .  Here’s an easy 

example. 

 

Example 3:  Given the joint density function 
for 0 1 and 0 1

( , )
0
x y x y

p x y
otherwise

+ ≤ ≤ ≤ ≤⎧
= ⎨
⎩

, 

find the probability that 10
2

x≤ ≤  and 10
2

y≤ ≤ . 

 

Solution:  Probability = 
1 21 21 2 1 2 2

0 0 0 0

10
2 ( )
1 20
2

x yP x y dydx xy dx
y

⎛ ⎞≤ ≤⎜ ⎟ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎝ ⎠≤ ≤⎜ ⎟
⎝ ⎠

∫ ∫ ∫  

1 21 2

00

1 1 1 1 1
2 8 2 8 16 16 8
x xdx⎛ ⎞ ⎛ ⎞= + = + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ .   ■ 

 

Next, I want to show you a very useful theorem.  It basically says that if you have two 

probability density functions of one variable, then it’s very easy to construct a joint 

density function from them.  For example,, both height and weight for adult men tend 
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to be normally distributed.  Using the theorem we will prove below, we can easily 

construct a corresponding joint density function for answering questions such as what 

is the probability that an adult male has a height between  five feet and six feet and a 

weight between 180 pounds and 200 pounds? 

 

Theorem:  If ( )p x  and ( )q y  are both probability density functions of one variable, 

then ( , ) ( ) ( )f x y p x q y=  is a joint density function. 

 

Proof:  It suffices to show that ( ) ( ) 1p x q y dydx
∞ ∞

−∞ −∞

=∫ ∫ .  Clearly, though, since functions 

of one variable may be treated as constants when integrated with respect to another 

variable, we have 

( ) ( ) ( ) ( ) ( ) ( ) 1 1 1p x q y dydx p x q y dy dx q y dy p x dx
∞ ∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞ −∞

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = = ⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ ∫ ∫ ∫ ∫ .   ■ 

 

This proof also shows us how to evaluate a joint density function that has been 

constructed from two probability density functions of a single variable.  We merely 

multiply two individually calculated probabilities together.  For example, let’s 

suppose that adult men have an average height of 5.75 feet (5 feet, 9 inches) with a 

standard deviation of 3 inches (0.25 feet), and that the average weight of an adult 

male is 190 pounds with a standard deviation of 10 pounds.  Then, technically 
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speaking, the probability that an adult male has a height between 5 feet and 6 feet is 

21 5.756
2 0.25

5

1
0.25 2

x

e dx
π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠∫ , and the probability that an adult male has a weight between 

180 pounds and 200 pounds is 
21 190200

2 10

180

1
10 2

y

e dy
π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠∫ .  Consequently, the joint 

probability that an adult male has a height between 5 feet and 6 feet and a weight 

between 180 pounds and 200 pounds is 

2 21 5.75 1 1906 200
2 0.25 2 10

5 180

1 1
0.25 2 10 2

x y

e dx e dy
π π

− −⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⋅∫ ∫ .  For those who know a little 

probability theory, this product should come as no surprise because whenever we are 

finding the probability of two events joined by the word “and,” we generally multiply 

simpler probabilities together.  In this case, though, we can’t find simple expressions 

for the antiderivatives of our integrands, and so we have to evaluate these integrals 

numerically.  Fortunately, these days even a TI-83 or TI-84 calculator can easily do 

the math.  Using the normal cumulative distribution key on this calculator, we get that 

the probability that the height is from 5 to 6 feet is approximately 0.84, and the 

probability that the weight is in the specified range is about 0.68.  Thus, the 

probability that both these events occur is 0.84 0.68 0.57⋅ ≈ . 

Now let’s increase the level of complexity one notch above that of double integrals.  

Let’s talk about triple integrals.  Mathematically speaking, a triple integral is just an 

integral that is done with respect to a volume in three dimensions as opposed to an 
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area in two dimensions that we integrate over when doing double integrals.  Thus, in 

a triple integral, an element of volume is defined by a product of the change in y times 

the change in x times the change in z.  Symbolically, we can write this as 

change in volume V x y z= Δ = Δ Δ Δ , and in differential form we write this as 

dV dxdydz= .  Now let’s suppose that we have a function of three variables such as 

( , , )w f x y z=  and that we want to integrate this function over a solid region V in three 

dimensional space.  Then we write this integral as ( , , )
V

f x y z dV∫∫∫ .  Now we have to 

ask, how do we evaluate this integral?  Fortunately, Fubini’s Theorem can be proven 

for this higher dimensional case, and thus, we can write the integral as three separate 

iterated integrals.  In particular, suppose the region V can be described by the 

inequalities a x b≤ ≤ , 1 2( ) ( )g x y g x≤ ≤ , and 1 2( , ) ( , )h x y z h x y≤ ≤ .  Then 

2 2

1 1

( ) ( , )

( ) ( , )

( , , ) ( , , )
g x h x yb

V
a g x h x y

f x y z dV f x y z dzdydx=∫∫∫ ∫ ∫ ∫ .  By Fubini’s Theorem, this triple 

integral can be written as an iterated integral in six different ways corresponding to 

the six different permutations we can make of the variables x, y, and z.  Of course, 

some orders may lead to an easy integration while others lead to expressions that it’s 

difficult or impossible to find simple antiderivatives for.  Furthermore, if our 

integrand is equal to 1, then the result of our triple integral is 
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2 2

1 1

( ) ( , )

( ) ( , )

volume 
g x h x yb

V
a g x h x y

dV dzdydx= =∫∫∫ ∫ ∫ ∫ .  Now let’s look at a couple of example 

problems involving triple integrals. 

 

Example 4:  Find the volume of the solid in the first octant that is bounded below by 

the xy-plane and above by the plane 1x y z+ + = . 

 

Solution:  The whole trick to triple integrals is figuring out how to describe your 

region of integration in terms of intervals involving the variables x, y, and z.  A 

picture can be very helpful, but it still takes a certain amount of practice and 

ingenuity.   

 

In this case, though, our solid is bounded above by the plane 1x y z+ + =  and below 

by the xy-plane.  This suggests that if we rewrite 1x y z+ + =  as 1z x y= − − , then we 

can say throughout that z varies from 0z =  to 1z x y= − − .  Consequently, all we need 

to do now is to describe the bottom part of our solid in terms of x and y.  In two 

dimensions, our bottom part looks like this. 
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The corner points are at ( )0,0 , ( )0,1 , and ( )1,0 .  Additionally, the line through ( )0,1  

and ( )1,0  can be described by 1y x= − + .  Thus, we can describe the enclosed 

triangular region by the inequalities 0 1x≤ ≤  and 0 1y x≤ ≤ − + .  We’re now ready to 

list all our inequalities together and to find the volume of our solid. 

0 1
0 1
0 1

x
y x
z x y

≤ ≤
≤ ≤ − +
≤ ≤ − −

 

11 1 1 1

0 0 0 0 0
11 12 2

0 00
1 12 2

2

0 0
13 2

0

Volume (1 )

( 1)1 ( 1)
2 2

2 1 11
2 2 2

1
6 2 2 6

x yx x

V

x

dV dzdydx x y dydx

y xy xy dx x x x dx

x x xx x x dx x dx

x x x

− −− + − +

− +

= = = − −

⎛ ⎞ ⎛ ⎞− +
= − − = − + − − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− +
= − + + − − = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
= − + =⎜ ⎟
⎝ ⎠

∫∫∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

∫ ∫
 

Any questions? 
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Our last example on triple integrals involves integrating a function over a solid 

volume. 

 

Example 5:  Let V be the solid region between the graphs of 2z y= −  and 2z x=  where 

0 1x≤ ≤  and 0 y x≤ ≤ .  Evaluate ( 1)
V

x dV+∫∫∫ .   

 

Solution:  The solid bounded by a variety of surfaces is not that easy to draw, but 

here’s part of it. 

 

Fortunately, it’s still pretty easy to see how to describe our solid region in terms of 

inequalities. 
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2 2

0 1
0

x
y x

y z x

≤ ≤
≤ ≤

− ≤ ≤

 

Thus,  

( )
2

2

1 1
2 2

0 0 0 0

11 13 3 4
2

0 0 00

Volume 

4 1
3 3 3 3

x x x

V
y

x

dV dzdydx x y dydx

y x xx y dx dx

−

= = = +

⎛ ⎞
= + = = =⎜ ⎟

⎝ ⎠

∫∫∫ ∫ ∫ ∫ ∫ ∫

∫ ∫
 

Pretty simple! 

 

Quite often what is a difficult integral in xyz-coordinates can be a very simple integral 

in other coordinate systems.  At this point, the only other coordinate systems we are 

familiar with are polar, cylindrical, and spherical coordinates.  We’ll begin with 

double integrals in polar coordinates.  It’s often advantageous to switch to this 

coordinate system if the region R we are integrating over is circular or otherwise easy 

to describe in the polar coordinate system.  Also, recall the following important 

relationships between polar coordinates and x and y. 

2 2 2

cos
sin

x r
y r

x y r

θ
θ

= ⋅
= ⋅

+ =

 

 

Recall also that when dealing with rectangular coordinates, we were able to write a 

double integral as an iterated integral with respect to y and x in the way we did 
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because an element of area in our region R was equal to the product of a change in y 

times a change in x. 

A y x dA dydxΔ = Δ Δ ⇒ =  

( , ) ( , )
b d

R
a c

f x y dA f x y dydx=∫∫ ∫ ∫  

Consequently, the question is if we are going to write ( , )
R

f x y dA∫∫  as an iterated 

integral with respect to r and θ, then how do we express an element of area in terms 

of these input variables?  The diagram below gives us the answer. 

 

 

 

 

 

 

 

 

 

 

 

In polar coordinates, our elements of area are portions of “pizza slices.”  

Consequently, they aren’t the usual rectangles that we have when dealing with xy-

θ

θΔ
r θΔ

r

rΔ

AΔ

A r r r r
dA rdrd
θ θ

θ
Δ ≈ Δ ⋅Δ = Δ Δ

=

θ

θΔ
r θΔ

r

rΔ

AΔ

A r r r r
dA rdrd
θ θ

θ
Δ ≈ Δ ⋅Δ = Δ Δ

=
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coordinates.  Nonetheless, if our changes in r and θ are small, then our regions will 

approximate rectangles. 

 

If we look at the shaded region above, we see that one side of it corresponds to the 

change in radius, rΔ , and the other side corresponds to the length of a circular arc 

where the radius is r and the angle is represented by θΔ .  In this case, the arc length 

is r θΔ .  And since our element of area is approximately rectangular when the 

changes in our variables are small, we can unequivocally state that, 

A r r r rθ θΔ ≈ Δ ⋅ Δ = Δ Δ  

This tells us that the corresponding formula for differentials is, 

dA r drdθ=  

Hence, if we make this substitution for dA  in our double integral, then we get 

( , ) ( cos , sin )
f h

R
e g

f x y dA f r r rdrdθ θ θ=∫∫ ∫ ∫  

In other words, to write our double integral as an iterated integral in polar 

coordinates, we have to replace dA  by r drdθ , the variable x by cosr θ , and the 

variable y by sinr θ .  Additionally, our limits of integration have to be changed to 

reflect the corresponding intervals for r and θ.  Let’s look at a few examples. 
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Example 6:  Find the area of one petal of the three petal rose that is the graph of 

sin(3 )r θ= . 

 

 

 

 

 

 

Solution:  Let 

1

0
3

0 sin(3 )

z

r

πθ

θ

=⎧
⎪⎪ ≤ ≤⎨
⎪

≤ ≤⎪⎩

.  Then, 

sin(3 )3 3 3sin(3 ) 2 2

0 0 0 00

sin (3 )Area 
2 2R

rdA r drd d d
θπ π πθ θθ θ θ= = = =∫∫ ∫ ∫ ∫ ∫  

2

00 0

1 1 1 cos2 1 sin 2sin
6 6 2 6 2 4 12

u u uu du du
ππ π π− ⎛ ⎞= = = − =⎜ ⎟

⎝ ⎠∫ ∫ .    ■ 

 

As you can see, one of the tricks is to simply describe your region properly in terms 

of polar coordinates.  Once you’ve accomplished that, the other substitutions are 

usually pretty easy.  Now let’s look at another example where our polar limits of 

integration are already given to us. 
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Example 7:  Find the integral of 2 2 3 2
1

( )
z

x y
=

+
 on the region R corresponding to 

0
4
πθ≤ ≤  and 1 2r≤ ≤ . 

 

Solution:  Since our integrand involves the expression 2 2x y+ , we can immediately 

replace this by 2r .  Thus, 

4 42 2
2

2 2 3 2 2 3 2
0 1 0 1

1 1
( ) ( )R

dA r drd r drd
x y r

π π

θ θ−= =
+∫∫ ∫ ∫ ∫ ∫  

24 4 4

00 01

1 1
2 2 8

d d
r

π π πθ πθ θ= − = = =∫ ∫ .    ■ 

 

If we are using a triple integral to find a volume and if the corresponding region in the 

xy-plane is easily described by polar coordinates, then it might be a good idea to 

express the triple integral in cylindrical coordinates.  Recall that in cylindrical 

coordinates, the first two coordinates are polar and the third coordinate is still z as in 

the usual xyz-rectangular system.  Now to properly convert to cylindrical coordinates, 

the trick is going to be to figure out how an element of volume would be represented 

in this coordinate system.  The following diagram will guide us in how to do this. 
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Again, when the changes in our variables are small, the element of volume can be 

approximated by a cube.  From the diagram above we see that we can take the height 

of this cube to be zΔ , and the sides of the base to be rΔ  and r θΔ .  That results in the 

approximation we see above that V r z r r z rθ θΔ ≈ Δ Δ Δ = Δ Δ Δ .  Or as we write in the 

differential version, dV r dzdrdθ= .  Now let’s take an example or two. 

 

x

y

z

r
θΔ

r θΔ

r θΔ

zΔ

rΔ

rΔ

V r z r r z r
dV r dzdrd

θ θ
θ

Δ ≈ Δ ⋅ Δ ⋅Δ = Δ Δ Δ

=

x

y

z

r
θΔ

r θΔ

r θΔ

zΔ

rΔ

rΔ

x

y

z

r
θΔ

r θΔ

r θΔ

zΔ

rΔ

rΔ

x

y

z

r
θΔ

r θΔ

r θΔ

zΔ

rΔ

rΔ

x

y

z

r
θΔ

r θΔ

r θΔ

zΔ

rΔ

rΔ

x

y

z

r
θΔ

r θΔ

r θΔ

zΔ

rΔ

rΔ

V r z r r z r
dV r dzdrd

θ θ
θ

Δ ≈ Δ ⋅ Δ ⋅Δ = Δ Δ Δ

=
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Example 8:  Find the volume of the region above the xy-plane and beneath the cone 

defined by 2 2 2z x y r r= + = = , 0 1r≤ ≤ , and 0 2θ π≤ ≤ . 

 

 

Solution:  In this case, the range for z will be 0 z r≤ ≤ .  Thus, 

2 1 2 1

0 0 0 0 0 0

Volume 
rr

V
dV r dzdrd rz drd

π π

θ θ= = =∫∫∫ ∫ ∫ ∫ ∫ ∫  

1 22 1 2 23
2

00 0 0 00

1 2 .
3 3 3 3
rr drd d d

ππ π π θ πθ θ θ= = = = =∫ ∫ ∫ ∫    ■ 

 

One of my favorite uses of polar coordinates is to find the volume of a filled ice 

cream cone such as we do in the next example. 
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Example 9:  Find the volume of the ice cream cone defined by 22r z r≤ ≤ − , 

0 1r≤ ≤ , and 0 2θ π≤ ≤ . 

 

Solution:  There are a couple of things we should probably point out before getting 

started.  First, the ranges for the polar coordinates, 0 1r≤ ≤  and 0 2θ π≤ ≤ , describe 

the unit circle in the xy-plane, the circle of radius 1 with center at the origin.  Second, 

z r=  is going to give us the same cone that we looked at in the previous example.  

The ice cream that is put in the cone, however, is what we claim is described by 

22z r= − .  To see why this is so, recall that 2 2 2r x y= + .  Hence, 

2 2 2 2 2 2 2 2 22 2 ( ) 2 ( ) 2z r x y z x y x y z= − = − + ⇒ = − + ⇒ + + = .  This last equation is 

nothing more than the equation for a sphere of radius 2  with center at the origin.  

However, the restrictions in the xy-plane that 0 1r≤ ≤  and 0 2θ π≤ ≤  result in us 
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getting only that portion of the sphere that tops off the ice cream cone.  Now let’s find 

the volume. 

 

( )

2
2 22 1 2 2 1

0 0 0 0

12 1 2 2 3 2 3
2 2

0 0 0 0

Volume 

(2 )2
3 3

rr

V
r r

dV r dzdrd rz drd

r rr r r drd d

π π

π π

θ θ

θ θ

−−

= = =

⎛ ⎞− −
= − − = −⎜ ⎟

⎝ ⎠

∫∫∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

 

( )
22 3 2 3 2 3 2

0 0

(2 2) (2 2) 2 (2 2) 4 2 1
3 3 3 3

d
ππ θ π πθ− − −

= = = = −∫ .    ■ 

 

I love combining math with food!  Also, note that if we were trying to find this same 

volume using rectangular coordinates, then our integral would look like this. 

( )

2 2 2

2 2 2

2

2

1 21

1 1

11
2 2 2 2

1 1

Volume 

2

y x y

V
y x y

y

y

dV dzdydx

x y x y dydx

− − −

− − − +

−

− − −

= =

= − − − +

∫∫∫ ∫ ∫ ∫

∫ ∫

 

Trust me.  This integral is not a piece of cake in rectangular coordinates.  Changing to 

cylindrical coordinates makes the problem much easier.   

 

We’ll soon redo the same problem in spherical coordinates.  First, though, recall some 

of the basic formulas for converting between rectangular and spherical coordinates. 
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Since we’ve gone over this diagram before, we’ll leave it to you to do the math this 

time.  Instead, we’ll focus now on how to describe an element of volume in spherical 

coordinates.  As you might expect, this element will be a piece of a sphere, and as the 

changes in our variables get smaller, this piece will approximate a cube. 

 

 

 

 

 

 

 

rθ

cos( ) sin( )cos( )
sin( ) sin( )sin( )
cos( )

x r
y r
z

θ ρ ϕ θ
θ ρ ϕ θ

ρ ϕ

= =
= =

=

2 2 2 2

2 2 2

tan

arccos

x y z
y
x

z

x y z

ρ

θ

ϕ

= + +

=

=
+ +

0
0
0 2

ρ
ϕ π
θ π

≤ <∞
≤ ≤
≤ <

ϕ ρ ( , , )ρ θ ϕ

rθ

cos( ) sin( )cos( )
sin( ) sin( )sin( )
cos( )

x r
y r
z

θ ρ ϕ θ
θ ρ ϕ θ

ρ ϕ

= =
= =

=

2 2 2 2

2 2 2

tan

arccos

x y z
y
x

z

x y z

ρ

θ

ϕ

= + +

=

=
+ +

0
0
0 2

ρ
ϕ π
θ π

≤ <∞
≤ ≤
≤ <

ϕ ρ ( , , )ρ θ ϕ
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From this diagram we can see that our element of volume is, 

2sin sinV rρ ρ ϕ θ ρ ρ ϕ ρ ϕ θ ρ ϕ ρ ϕ θΔ ≈ Δ ⋅ Δ ⋅ Δ = Δ ⋅ Δ ⋅ Δ = Δ Δ Δ  

In differential form this becomes, 

2 sindV d d dρ ϕ ρ ϕ θ=  

Thus, in spherical coordinates our triple integral for volume becomes the following 

iterated integral, 

2Volume sin
fb d

V
a c e

dV d d dρ ϕ ρ ϕ θ= =∫∫∫ ∫ ∫ ∫  

θ

ϕ

θΔ

ρ

r

sinr ρ ϕ= ρΔ

ρ ϕΔ
sinr θ ρ ϕ θΔ = Δ

2sin sinV ρ ρ ϕ ρ ϕ θ ρ ϕ ρ ϕ θΔ ≈ Δ ⋅ Δ ⋅ Δ = Δ Δ Δ

θ

ϕ

θΔ

ρ

r

sinr ρ ϕ= ρΔ

ρ ϕΔ
sinr θ ρ ϕ θΔ = Δ

2sin sinV ρ ρ ϕ ρ ϕ θ ρ ϕ ρ ϕ θΔ ≈ Δ ⋅ Δ ⋅ Δ = Δ Δ Δ

θ

ϕ

θΔ

ρ

r

sinr ρ ϕ= ρΔ

ρ ϕΔ
sinr θ ρ ϕ θΔ = Δ

θ

ϕ

θΔ

ρ

r

sinr ρ ϕ=

θ

ϕ

θΔ

ρ

r

sinr ρ ϕ= ρΔ

ρ ϕΔ
sinr θ ρ ϕ θΔ = Δ

2sin sinV ρ ρ ϕ ρ ϕ θ ρ ϕ ρ ϕ θΔ ≈ Δ ⋅ Δ ⋅ Δ = Δ Δ Δ
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Using spherical coordinates, we can now easily show that the volume of a sphere of 

radius r is 34
3

rπ . 

 

Example 10:  Find the volume of a sphere of radius r with center at the origin. 

 

Solution:  We simply set up a triple integral with the following limits and integrate. 

0
0
0 2

rρ
ϕ π
θ π

≤ ≤
≤ ≤
≤ ≤

 

2 2 3
2

0 0 0 0 0 0

22 2 23 3 3 3
3

0 0 0 0 00

sinVolume sin
3

sin cos 2 2 4
3 3 3 3 3

rr

V
dV d d d d d

r r r rd d d d r

π π π π

π ππ π π π

ρ ϕρ ϕ ρ ϕ θ ϕ θ

ϕ ϕ θϕ θ θ θ π

= = =

= = − = = =

∫∫∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
 

 

Now we’ll use spherical coordinates to tackle the ice cream problem! 

 

Example 11:  Find the volume of the ice cream cone defined by 0 2θ π≤ ≤ , 0
4
πϕ≤ ≤ , 

and 0 2ρ≤ ≤ . 
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Solution:  First, notice how incredibly easy it is to describe this solid region in 

spherical coordinates.  Our angle θ in the xy-plane goes full circle from 0 to 2π , our 

angle ϕ  with the positive z-axis goes from 0 to 
4
π , and the sphere radius goes from 0 

to 2 .  It’s as easy as π!  And now that we understand our limits of integration, we 

can find the volume. 

42 2
2

0 0 0

24 42 23 3 2

0 0 0 00
42 23 2 3 2

0 00
23 2

3 2

0

Volume sin

2sin sin
3 3

2 2 1( cos ) 1
3 3 2

2 1 2 1 4 11 2 1 2 1
3 3 32 2 2

V
dV d d d

d d d d

d d

ππ

π ππ π

ππ π

π

ρ ϕ ρ ϕ θ

ρ ϕ ϕ θ ϕ ϕ θ

ϕ θ θ

θ π π

= =

= =

−⎛ ⎞
= − = +⎜ ⎟

⎝ ⎠

⋅ − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + = ⋅ + = ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫∫∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫
 

( )4 2 1
3
π

= − .    ■ 

 

Here’s another example that’s tailor made for spherical coordinates. 

 

Example 12:  Find 2

V
z dV∫∫∫  on the region between the spheres with radii 1ρ =  and 

2ρ = . 
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Solution:  Notice in this problem that we have 

2 2 2

0 2
0
1 2

cos cosz z

θ π
ϕ π
ρ

ρ ϕ ρ ϕ

≤ ≤⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ = ⇒ =⎩

.   

Hence, 

( )

2 2
2 2 2 2

0 0 1
22 25

2 2

0 0 0 01

3 22 2

00 00

cos sin

31cos sin cos sin
5 5

cos31 62 62
5 3 15 15

V
z dV d d d

d d d d

d d

π π

π π π π

π
ππ π

ρ ϕ ρ ϕ ρ ϕ θ

ρ ϕ ϕ ϕ θ ϕ ϕ ϕ θ

ϕ θθ θ

=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

−
= = =

∫∫∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

 

62 2 62 0 124
15 15 15

π π⋅ ⋅
= − = .    ■ 

 

What could be simpler! 

 

The above examples certainly illustrate how changing to a different coordinate 

system can often make an integration easier to do.  However, our limitation has been 

that we only had a few different coordinate systems to convert to, polar, cylindrical, 

or spherical.  Nonetheless, these examples raise the question of whether it is possible 

to find a general formula for changing from rectangular coordinates to any coordinate 

system whatsoever.  This last part of our chapter is devoted to accomplishing this 
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task, and to help us develop a more general procedure, we’ll take another look at what 

goes on when we change from rectangular to polar coordinates. 

 

When we convert a double integral from rectangular to polar coordinates, recall the 

changes that must be made to x, y, and dA . 

( , ) cos
( , ) sin

x x r r
y y r r
dA r drd

θ θ
θ θ
θ

= =
= =
=

 

In the polar coordinate system, an element of area is generally a rectangle 

corresponding to a range of values for r and θ. 

 

 

 

 

 

 

 

However, as you can see above, in the xy-coordinate system, this rectangle takes on a 

different shape, and the formula for an element of area changes. 

 

 

 

r

θ

x

y
T R

r

θ

x

y
T R
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And of course, this leads to the following formula for double integrals in polar 

coordinates. 

( , ) ( cos , sin )
R T

f x y dA f r r r drdθ θ θ=∫ ∫ ∫ ∫  

 

Using the polar coordinate example as a model, we now want to develop a general 

method for finding change of variable formulas such as the polar coordinate one.  

Thus, suppose we have a rectangle in an st-coordinate system and a pair of functions 

that converts ( ),s t  coordinates into ( ),x y  coordinates. 

( , )
( , )

x x s t
y y s t
=
=

 

Suppose also that these functions are differentiable and that the transformation from 

the st-coordinates to xy-coordinates is one-to-one.  Then because of differentiability, 

 

r

θ

x

y

A r r θΔ ≈ ⋅ Δ ⋅Δ

T R

r

θ

x

y

A r r θΔ ≈ ⋅ Δ ⋅Δ

T R
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local linearity will be present and a small rectangle in the st-coordinate system will be 

mapped onto approximately a parallelogram in the xy-coordinate system. 

 

 

 

 

 

 

 

If we add some coordinates, then it looks like this. 

 

 

 

 

 

 

 

 

 

s

t

x

y

( , )
( , )

x x s t
y y s t
=
=

T

R

s

t

x

y

( , )
( , )

x x s t
y y s t
=
=

T

R

s

t

( ),s t ( ),s s t+ Δ

( ),s t t+ Δ

y

( ) ( )( ), , ,x s t y s t

( ) ( )( ), , ,x s s t y s s t+ Δ + Δ

( ) ( )( ), , ,x s t t y s t t+ Δ + Δ

a

b

( , )
( , )

x x s t
y y s t
=
=

T

s

t

( ),s t ( ),s s t+ Δ

( ),s t t+ Δ

y

( ) ( )( ), , ,x s t y s t

( ) ( )( ), , ,x s s t y s s t+ Δ + Δ

( ) ( )( ), , ,x s t t y s t t+ Δ + Δ

a

b

y

( ) ( )( ), , ,x s t y s t

( ) ( )( ), , ,x s s t y s s t+ Δ + Δ

( ) ( )( ), , ,x s t t y s t t+ Δ + Δ

a

b

( , )
( , )

x x s t
y y s t
=
=

T
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Since an element of area in our xy-coordinate system is represented by a 

parallelogram, the area of this parallelogram is equal to a b×  where a  and b  are 

vectors that correspond to the two sides of the parallelogram. 

 

 

 

 

 

 

 

However, notice that, 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

ˆ ˆ, , , ,

ˆ ˆ

ˆ ˆ, , , ,

ˆ ˆ

a x s s t x s t i y s s t y s t j

x ys i s j
s s

b x s t t x s t i y s t t y s t j

x yt i t j
t t

= + Δ − + + Δ −

∂ ∂
≈ Δ + Δ
∂ ∂

= + Δ − + + Δ −

∂ ∂
≈ Δ + Δ
∂ ∂

 

 

Hence, 

y

( ) ( )( ), , ,x s t y s t

( ) ( )( ), , ,x s s t y s s t+ Δ + Δ

( ) ( )( ), , ,x s t t y s t t+ Δ + Δ

a

b
Area a b= ×

y

( ) ( )( ), , ,x s t y s t

( ) ( )( ), , ,x s s t y s s t+ Δ + Δ

( ) ( )( ), , ,x s t t y s t t+ Δ + Δ

a

b

y

( ) ( )( ), , ,x s t y s t

( ) ( )( ), , ,x s s t y s s t+ Δ + Δ

( ) ( )( ), , ,x s t t y s t t+ Δ + Δ

a

b
Area a b= ×
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ˆˆ ˆ

ˆ0

0

i j k
x y x y y xa b s s s t s t k
s s s t s t
x yt t
t t

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞× ≈ Δ Δ = Δ ⋅ Δ − Δ ⋅ Δ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂

Δ Δ
∂ ∂

 

 

Furthermore, 

x y y x x y y xa b s t s t s t
s t s t s t s t
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

× ≈ Δ ⋅ Δ − Δ ⋅ Δ = − Δ Δ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 

The expression inside the last absolute value sign is called the Jacobian, and it is 

usually written as,  

( , )
( , )

x x
x y x y y xs t

y ys t s t s t
s t

∂ ∂
∂ ∂ ∂ ∂ ∂∂ ∂= = −

∂ ∂∂ ∂ ∂ ∂ ∂
∂ ∂

 

 

Consequently, the area of our parallelogram is equal to the absolute value of the 

Jacobian times the change in s and the change in t. 

( )
( )

,
,

x yx y y xArea A a b s t s t
s t s t s t

∂∂ ∂ ∂ ∂
= Δ = × ≈ − Δ Δ = Δ Δ

∂ ∂ ∂ ∂ ∂
 

 

And this tells us exactly what to substitute for dA  in our integral formula,  
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( , )
( , )
x ydA dsdt
s t

∂
=

∂
 

( )
( )

( )
( )

0

, 0

( , ) lim ( , )

,
lim ( ( , ), ( , ))

,

,
( ( , ), ( , ))

,

R A

s t

T

f x y dA f x y A

x y
f x s t y s t s t

s t

x y
f x s t y s t dsdt

s t

Δ →

Δ Δ →

= ⋅Δ

∂
= ⋅ Δ Δ

∂

∂
= ⋅

∂

∑∫∫

∑

∫∫

 

 

Now let’s verify that this formula works for transformations to polar coordinates. 

cos
sin

x r
y r

θ
θ

=
=

 

( )2 2 2 2

cos sin( , )
sin cos( , )

cos sin cos sin

x x
rx y r

y y rr
r

r r r r

θ θθ
θ θθ

θ

θ θ θ θ

∂ ∂
−∂ ∂ ∂= =

∂ ∂∂
∂ ∂

= + = + =

 

( , )
( , )
x y r r
r θ

∂
= = =

∂
 

( , )
( , )
x ydA drd r drd
r

θ θ
θ

∂
= =
∂

 

 

Bingo! 

( )
( )

,
( , ) ( cos , sin )

,

( cos , sin )

R T

T

x y
f x y dA f r r drd

r

f r r r drd

θ θ θ
θ

θ θ θ

∂
= ⋅

∂

= ⋅

∫ ∫ ∫ ∫

∫ ∫
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Now let’s try to figure out how to transform an ellipse into a circle.  Suppose we start 

with the equation for an ellipse below, and we’ll assume that both a and b are 

positive. 

2 2

2 2 1x y
a b

+ =  

If we set 
x a s
y b t
= ⋅⎧

⎨ = ⋅⎩
, then 

2 2 2 2
2 2

2 2 2 2
( ) ( )1 1 1x y a s b t s t

a b a b
⋅ ⋅

+ = ⇒ + = ⇒ + =  

 

Hence, the Jacobian of this transformation is, 

0( , )
0( , )

x x
ax y s t ab

y y bs t
s t

∂ ∂
∂ ∂ ∂= = =

∂ ∂∂
∂ ∂

 

 

And the absolute value of the Jacobian is, 

( , )
( , )
x y ab
s t

∂
=

∂
 

 

Using this transformation, we can now easily find the area of the ellipse. 

ellipse unit circle

unit circle

Areaof ellipse dA ab dsdt

ab dsdt ab abπ π

= =

⎛ ⎞= = ⋅ =⎜ ⎟
⎝ ⎠

∫∫ ∫∫

∫∫
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It’s a piece of lettuce!  Nothing to it! 

 

Everything we’ve done involving changing coordinate systems carries over to higher 

dimensions, too.  In fact, if we have transformation involving three variables, then our 

Jacobian looks like this, 

( , , )
( , , )

x x x
s t u

x y z y y x
s t u s t u

z z z
s t u

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 

 

Here’s an example of how find the volume of the ellipsoid 
2 2 2

2 2 2 1x y z
a b c

+ + =  by first 

using a change of variables to transform the ellipsoid into a sphere.  Again, we will 

assume that a, b, and c are positive. 

 

Let 
x a s
y b t
z c u

= ⋅⎧
⎪ = ⋅⎨
⎪ = ⋅⎩

.  Then this will transform our ellipsoid into a sphere of radius 1. 

2 2 2 2 2 2 2 2 2
2 2 2

2 2 2 2 2 21 1 1x y z a s b t c u s t u
a b c a b c

+ + = ⇒ + + = ⇒ + + =  
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Furthermore, recall that the volume of a sphere of radius r is given by the formula 

34
3

V rπ= .  Hence, in this case with 1r = , the volume is just 4
3
π . 

Additionally, the Jacobian of this transformation is, 

0 0
( , , ) 0 0
( , , )

0 0

x x x
s t u a

x y z y y x b abc
s t u s t u

cz z z
s t u

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 

 

Thus, the volume of our ellipsoid is, 

( , , )
( , , )

4 4
3 3

R T T

T

x y zVolume dV dsdtdu abc dsdtdu
s t u

abc dsdtdu abc abcπ π

∂
= = =

∂

= = ⋅ =

∫∫∫ ∫∫∫ ∫∫∫

∫∫∫
 

 

Any questions?   

 

 


