ANGLES BETWEEN VECTORS

(1-7) Let $\vec{u} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{v} = \hat{i} - 5\hat{j} + \hat{k}$, and $\vec{w} = -3\hat{i} - 2\hat{j} - 8\hat{k}$. Find the angles between the following vectors. Give your answers in degrees rounded, if necessary, to the nearest tenth of a degree.

- 1. \vec{u} and \vec{v}
- 2. \vec{u} and \vec{w}
- 3. \vec{v} and \vec{w}
- 4. \vec{v} and $2\vec{w}$
- 5. \vec{v} and \vec{v}
- 6. \vec{w} and $-\vec{w}$
- 7. $(\vec{u} + \vec{w})$ and $(\vec{u} \vec{w})$
- 8. Let $\vec{v} = a\hat{i} + b\hat{j} + c\hat{k}$ be a nonzero vector, and let α , β , and γ be the angles between \vec{v} and the unit vectors \hat{i} , \hat{j} , and \hat{k} , respectively. Show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$. (NOTE: The angles α , β , and γ are called the *direction angles* of \vec{v} , and $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are called the *direction cosines*.)