ANGLES BETWEEN VECTORS

(1-7) Let $\vec{u}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{v}=\hat{i}-5 \hat{j}+\hat{k}$, and $\vec{w}=-3 \hat{i}-2 \hat{j}-8 \hat{k}$. Find the angles between the following vectors. Give your answers in degrees rounded, if necessary, to the nearest tenth of a degree.

1. \vec{u} and \vec{v}
2. \vec{u} and \vec{w}
3. \vec{v} and \vec{w}
4. \vec{v} and $2 \vec{w}$
5. \vec{v} and \vec{v}
6. \vec{w} and $-\vec{w}$
7. $(\vec{u}+\vec{w})$ and $(\vec{u}-\vec{w})$
8. Let $\vec{v}=a \hat{i}+b \hat{j}+c \hat{k}$ be a nonzero vector, and let α, β, and γ be the angles between \vec{v} and the unit vectors \hat{i}, \hat{j}, and \hat{k}, respectively. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$. (NOTE: The angles α, β, and γ are called the direction angles of \vec{v}, and $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are called the direction cosines.)
