CHAIN RULE

If $x=t^{3}$ and $y=\sin t$, use the chain rule to find $\frac{d z}{d t}$. Show your work!

1. $z=f(x, y)=x^{3} y^{2}$
2. $z=f(x, y)=\sin \left(x^{3} y^{2}\right)$
3. $z=f(x, y)=\sqrt{x^{3} y^{2}}$
4. $z=f(x, y)=\sec \left(x^{3} y^{2}\right)$
5. $z=f(x, y)=\tan \left(x^{3} y^{2}\right)$
6. $z=f(x, y)=\sin ^{-1}\left(x^{3} y^{2}\right)$
7. Use the chain rule to find $\frac{\partial z}{\partial t}$ for $z=x^{2} y, x=\sin (s t)$, and $y=t^{2}+s^{2}$.
8. Use the chain rule to find $\frac{\partial z}{\partial s}$ for $z=x^{2} y^{2}, x=s t$, and $y=t^{2}-s^{2}$.
9. If $E=I R$ (voltage $=$ current \times resistance), and if all of these quantities are changing over time t, then use the chain rule to write down a formula for the rate at which voltage changes over time.
