CHAIN RULE

If $x = t^3$ and $y = \sin t$, use the chain rule to find $\frac{dz}{dt}$. Show your work!

1.
$$z = f(x, y) = x^3y^2$$

2.
$$z = f(x, y) = \sin(x^3 y^2)$$

3.
$$z = f(x, y) = \sqrt{x^3 y^2}$$

4.
$$z = f(x, y) = \sec(x^3 y^2)$$

5.
$$z = f(x, y) = \tan(x^3 y^2)$$

6.
$$z = f(x, y) = \sin^{-1}(x^3y^2)$$

- 7. Use the chain rule to find $\frac{\partial z}{\partial t}$ for $z = x^2 y$, $x = \sin(st)$, and $y = t^2 + s^2$.
- 8. Use the chain rule to find $\frac{\partial z}{\partial s}$ for $z = x^2 y^2$, x = st, and $y = t^2 s^2$.
- 9. If E = IR (voltage = current × resistance), and if all of these quantities are changing over time t, then use the chain rule to write down a formula for the rate at which voltage changes over time.