
CHANGE OF VARIABLES - ANSWERS 
 

1. Find the Jacobian of the following transformation. 
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2. Find the Jacobian of the following transformation. 
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3. Find the Jacobian of the following transformation. 
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4. Find the area of the ellipse by using a change of variables to transform the ellipse 
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5. Find the area of the ellipse by using a change of variables to transform the ellipse 
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6. Find the volume of the ellipsoid by using a change of variables to transform the 

ellipsoid 
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7. Find the area of the parallelogram with vertices ( ) ( ) ( ) ( )0,0 , 1,0 , 1,1 ,& 2,1  by using 
linear equations and a change of variables to transform the parallelogram into a 
rectangle. 
 
To transform our parallelogram into a rectangle, we will need the following 
correspondence between vertices in xy and vertices in uv. 
 
( ) ( )
( ) ( )
( ) ( )
( ) ( )

0,0 0,0

1,0 1,0

1,1 0,1

2,1 1,1

xy uv

xy uv

xy uv

xy u

↔

↔

↔

↔ v

 

 
We’ll now pull a linear algebra rabbit out of our hat and just assume that what we 
need to find are equations that express x and y as linear combinations of u and v.  We 
know this will work because linear algebra (which you may not have taken yet) tells 
us that such linear combinations will transform a straight line in the uv-plane into 
straight lines in the xy-plane and vice-versa.  Thus, if we want au bv x+ = , then using 
the last two pairs of coordinates above we get the following equations. 
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Similarly, if we want , then 
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