CHANGE OF VARIABLES

1. Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of the following transformation.

$$
\begin{aligned}
& x=2 u-3 v \\
& y=u+2 v
\end{aligned}
$$

2. Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of the following transformation.
$x=u v$
$y=4 u^{2}+2 v^{2}$
3. Find the Jacobian $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ of the following transformation.

$$
\begin{aligned}
& x=2 u+v-w \\
& y=3 u+2 v+2 w \\
& z=u+v+w
\end{aligned}
$$

4. Find the area of the ellipse by using a change of variables to transform the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ into a circle.
5. Find the area of the ellipse by using a change of variables to transform the ellipse $\frac{x^{2}}{36}+16 \frac{y^{2}}{9}=1$ into a circle.
6. Find the volume of the ellipsoid by using a change of variables to transform the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25}=1$ into a sphere.
7. Find the area of the parallelogram with vertices $(0,0),(1,0),(1,1), \&(2,1)$ by using linear equations and a change of variables to transform the parallelogram into a rectangle.
