CIRCLES - ANSWERS

Find parametric equations for the following circles. Be sure to state the range of values for your parameter.

1. The circle of radius 1 with center at the origin (aka the unit circle). Give three different parametrizations including one that traces the circle in the clockwise direction.

Answers will vary.

N - 2024		$x = \cos t$
$x = \cos t$	$x = \cos 2t$	$v = -\sin t$
$y = \sin t$	$y = \sin 2t$	0 < 1 < 0 =
$0 \le t \le 2\pi$	$0 \le t \le \pi$	$0 \le t \le 2\pi$
$0 \le l \le 2\pi$	$0 \leq l \leq n$	(clockwise)

Also,

$x = \cos t$
$y = \sin t$
$2\pi \ge t \ge 0$
(clockwise, start at $t = 2\pi$ and end at $t = 0$)

2. The circle of radius 2 with center at the origin.

$$x = 2\cos t$$
$$y = 2\sin t$$
$$0 \le t \le 2\pi$$

- 3. The circle with center at the origin that contains the point (1,1).
 - $x = \sqrt{2} \cos t$ $y = \sqrt{2} \sin t$ $0 \le t \le 2\pi$
- 4. The circle of radius 2 with center at (1,1).

 $x = 1 + 2\cos t$ $y = 1 + 2\sin t$ $0 \le t \le 2\pi$

5. The circle of radius $\sqrt{2}$ with center at the origin.

$$x = \sqrt{2} \cos t$$
$$y = \sqrt{2} \sin t$$
$$0 \le t \le 2\pi$$