COMPONENTS AND PROJECTIONS

(1-5) In each of the problems below, you are given a force vector \vec{F} and a distance vector \vec{d}. Suppose the magnitude of \vec{F} corresponds to the number of pounds of force and the magnitude of \vec{d} corresponds to a distance in feet that an object is moved by the force. For each of the problems below find $\operatorname{comp}_{\vec{d}} \vec{F}$, $\operatorname{proj}_{\vec{d}} \vec{F}$, and the work done by \vec{F} in moving the object the length of \vec{d}. Give exact answers, and on the latter, use units of foot-pounds.

1. $\vec{F}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{d}=2 \hat{i}+2 \hat{j}+5 \hat{k}$
2. $\vec{F}=3 \hat{i}+\hat{j}+4 \hat{k}, \vec{d}=8 \hat{i}+2 \hat{j}+6 \hat{k}$
3. $\vec{F}=3 \hat{i}+2 \hat{j}, \vec{d}=10 \hat{i}$
4. $\vec{F}=\hat{i}+\hat{j}, \vec{d}=5 \hat{i}+\hat{j}$
5. $\vec{F}=2 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{d}=2 \hat{i}+2 \hat{j}+2 \hat{k}$
6. Find the component of $\vec{v}=4 \hat{i}+5 \hat{j}+6 \hat{k}$ in the direction of the unit vector (a) \hat{i},
(b) \hat{j}, (c) \hat{k}, and (d) $\vec{u}=\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}$.
7. Explain why the triangle inequality, $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$, is true for the diagram below. (NOTE: The triangle inequality is also true for all real numbers a and b.)

