CROSS PRODUCT

Find the cross product $\vec{u} \times \vec{v}$

1.
$$\vec{u} = 2\hat{i} + 3\hat{j} - 2\hat{k}$$
$$\vec{v} = -4\hat{i} + 4\hat{j} + 3\hat{k}$$

2.
$$\vec{u} = 4\hat{i} + 2\hat{j} + \hat{k}$$

 $\vec{v} = -\hat{i} + 4\hat{j} - 2\hat{k}$

3.
$$\vec{u} = 2\hat{i} + 3\hat{j} - 2\hat{k}$$
$$\vec{v} = 2\hat{i} + 3\hat{j} - 2\hat{k}$$

4.
$$\vec{u} = 2\hat{i} + 3\hat{j} - 2\hat{k}$$
$$\vec{v} = 4\hat{i} + 6\hat{j} - 4\hat{k}$$

5.
$$\vec{u} = 2\hat{i} + 3\hat{j}$$
$$\vec{v} = -4\hat{i} + 4\hat{j}$$

6.
$$\vec{u} = 5\hat{i} + \hat{k}$$
$$\vec{v} = 3\hat{i} + 2\hat{k}$$

7.
$$\vec{u} = \hat{i}$$
$$\vec{v} = \hat{j}$$

8.
$$\vec{u} = \hat{j}$$
$$\vec{v} = \hat{i}$$

9.
$$\vec{u} = \hat{k}$$
$$\vec{v} = \hat{i}$$

10.
$$\vec{u} = \hat{i}$$
$$\vec{v} = \hat{k}$$

11. Let
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$. Then show by direct calculation that $\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$. (By the way, $\vec{a} \cdot (\vec{b} \times \vec{c})$ is known as a triple

scalar product, and $\left|\vec{a}\cdot(\vec{b}\times\vec{c})\right|$ is equal to the volume of the parallelepiped defined by the vectors \vec{a} , \vec{b} , and \vec{c} .

