CROSS-SECTIONS AND TANGENTS - ANSWERS

1. Let $z=f(x, y)=x^{2}+x y+y^{2}$. Find parametric equations for the cross-section of $z=f(x, y)=x^{2}+x y+y^{2}$ with the plane $x=1$.
$x=1$
$y=t$
$z=1+t+t^{2}$
$-\infty<t<\infty$

2. Let $z=f(x, y)=x^{2}+x y+y^{2}$, and let $P=(1,2,7)$. Find parametric equations for the line that is tangent to $z=f(x, y)=x^{2}+x y+y^{2}$ at the point $P=(1,2,7)$ and that lies in the plane $x=1$.
$z=1+y+y^{2}$
$z^{\prime}=1+2 y$
$z^{\prime}(2)=5$
$x=1$
$y=2+t$
$z=7+5 t$
$-\infty<t<\infty$

3. Let $z=f(x, y)=x^{2}+x y+y^{2}$. Find parametric equations for the cross-section of $z=f(x, y)=x^{2}+x y+y^{2}$ with the plane $y=2$.
$x=t$
$y=2$
$z=t^{2}+2 t+4$
$-\infty<t<\infty$

4. Let $z=f(x, y)=x^{2}+x y+y^{2}$, and let $P=(1,2,7)$. Find parametric equations for the line that is tangent to $z=f(x, y)=x^{2}+x y+y^{2}$ at the point $P=(1,2,7)$ and that lies in the plane $y=2$.

$$
\begin{aligned}
& z=x^{2}+2 x+4 \\
& z^{\prime}=2 x+2 \\
& z^{\prime}(1)=4 \\
& x=1+t \\
& y=2 \\
& z=7+4 t \\
& -\infty<t<\infty
\end{aligned}
$$

5. Find an equation for the plane that is tangent to $z=f(x, y)=x^{2}+x y+y^{2}$ at the point $P=(1,2,7)$. Write your answer in the form $z=A x+B y+C$.

$$
\begin{aligned}
& m_{x}=4, m_{y}=5 \\
& z=4 x+5 y+C \\
& 7=4(1)+5(2)+C \Rightarrow 7=14+C \Rightarrow C=-7 \\
& z=4 x+5 y-7
\end{aligned}
$$

