CROSS-SECTIONS AND TANGENTS

- 1. Let $z = f(x, y) = x^2 + xy + y^2$. Find parametric equations for the cross-section of $z = f(x, y) = x^2 + xy + y^2$ with the plane x = 1.
- 2. Let $z = f(x, y) = x^2 + xy + y^2$, and let P = (1, 2, 7). Find parametric equations for the line that is tangent to $z = f(x, y) = x^2 + xy + y^2$ at the point P = (1, 2, 7) and that lies in the plane x = 1.
- 3. Let $z = f(x, y) = x^2 + xy + y^2$. Find parametric equations for the cross-section of $z = f(x, y) = x^2 + xy + y^2$ with the plane y = 2.
- 4. Let $z = f(x, y) = x^2 + xy + y^2$, and let P = (1, 2, 7). Find parametric equations for the line that is tangent to $z = f(x, y) = x^2 + xy + y^2$ at the point P = (1, 2, 7) and that lies in the plane y = 2.
- 5. Find an equation for the plane that is tangent to $z = f(x, y) = x^2 + xy + y^2$ at the point P = (1, 2, 7). Write your answer in the form z = Ax + By + C.