CROSS-SECTIONS AND TANGENTS

1. Let $z=f(x, y)=x^{2}+x y+y^{2}$. Find parametric equations for the cross-section of $z=f(x, y)=x^{2}+x y+y^{2}$ with the plane $x=1$.
2. Let $z=f(x, y)=x^{2}+x y+y^{2}$, and let $P=(1,2,7)$. Find parametric equations for the line that is tangent to $z=f(x, y)=x^{2}+x y+y^{2}$ at the point $P=(1,2,7)$ and that lies in the plane $x=1$.
3. Let $z=f(x, y)=x^{2}+x y+y^{2}$. Find parametric equations for the cross-section of $z=f(x, y)=x^{2}+x y+y^{2}$ with the plane $y=2$.
4. Let $z=f(x, y)=x^{2}+x y+y^{2}$, and let $P=(1,2,7)$. Find parametric equations for the line that is tangent to $z=f(x, y)=x^{2}+x y+y^{2}$ at the point $P=(1,2,7)$ and that lies in the plane $y=2$.
5. Find an equation for the plane that is tangent to $z=f(x, y)=x^{2}+x y+y^{2}$ at the point $P=(1,2,7)$. Write your answer in the form $z=A x+B y+C$.
