DERIVATIVES OF VECTOR-VALUED FUNCTONS

(1-8) For each vector-valued function $\vec{r}(t)$ below, find $\frac{d \vec{r}}{d t}$.

1. $\vec{r}(t)=t \hat{i}+t^{2} \hat{j}+\frac{1}{t} \hat{k}$
2. $\vec{r}(t)=(t+1) \hat{i}+\left(t^{2}+1\right) \hat{j}+\left(t^{3}+1\right) \hat{k}$
3. $\vec{r}(t)=\left(e^{t}+1\right) \hat{i}+\left(e^{2 t}+1\right) \hat{j}+\left(t e^{t^{2}}+1\right) \hat{k}$
4. $\vec{r}(t)=\cos 2 t \hat{i}+\sin 2 t \hat{j}+t \hat{k}$
5. $\vec{r}(t)=\sqrt{t} \hat{i}+e^{3 t} \hat{j}+\ln (t) \hat{k}$
6. $\vec{r}(t)=\cos (t) \hat{i}+\sin (t) \hat{j}+\tan (t) \hat{k}$
7. $\vec{r}(t)=\frac{t}{1+t^{2}} \hat{i}+\sec (t) \hat{j}+\frac{e^{t}-e^{-t}}{2} \hat{k}$
8. $\vec{r}(t)=\cos ^{2}(t) \hat{i}+\sin ^{2}(t) \hat{j}+\sec ^{2}(t) \hat{k}$
9. If $\vec{r}(t)$ is a vector-valued function such that $\|\vec{r}(t)\|$ is constant, then use the derivative with respect to t of $\vec{r} \cdot \vec{r}$ to prove that $\vec{r}(t)$ is perpendicular to $\vec{r}^{\prime}(t)$.
10. A ladder of length L is leaning against a wall, and the top of the ladder is sliding down towards the floor. If the point P is at the midpoint of the ladder and the origin is placed where the wall meets the floor, then find:
a. The position of P in terms of a vector-valued function $\vec{r}(\theta)$, and
b. The derivative $\vec{r}^{\prime}(\theta)$.

