THE DIVERGENCE THEOREM

Use the Divergence Theorem (Gauss' Theorem), $Flux = \int_C \vec{F} \cdot N \, ds = \iint_R \nabla \cdot \vec{F} \, dA$, to measure the flux across the boundary of the unit circle (oriented counterclockwise) caused by each of the following vector fields.

7. $\vec{F} = xy\hat{i} + (x+y)\hat{j}$

R is a triangular region defined by $0 \le x \le 1$ and $0 \le y \le -x+1$, and *R* is oriented counterclockwise. Use the Divergence Theorem to find the flux across the curve created by the vector field \vec{F} .

8. $\vec{F} = xy\hat{i} + (x+y)\hat{j}$

R is a square region defined by $0 \le x \le 1$ and $0 \le y \le 1$, and *R* is oriented counterclockwise. Use the Divergence Theorem to find the flux across the curve created by the vector field \vec{F} .

9. $\vec{F} = xy\hat{i} + (x+y)\hat{j}$

R is the unit circle, and *R* is oriented counterclockwise. Use the Divergence Theorem to find the flux across the curve created by the vector field \vec{F} .

