DOT PRODUCT - ANSWERS

Find the dot product $\vec{u} \cdot \vec{v}$

1.
$$\vec{u} = 2\hat{i} + 3\hat{j} - 2\hat{k}$$
$$\vec{v} = -4\hat{i} + 4\hat{j} + 3\hat{k}$$
$$\vec{u} \cdot \vec{v} = -8 + 12 - 6 = -2$$

2.
$$\vec{u} = 4\hat{i} + 2\hat{j} + \hat{k}$$
$$\vec{v} = -\hat{i} + 4\hat{j} - 2\hat{k}$$
$$\vec{u} \cdot \vec{v} = -4 + 8 - 2 = 2$$

3.
$$\vec{u} = 2\hat{i} + 3\hat{j}$$
$$\vec{v} = -4\hat{i} + 4\hat{j}$$
$$\vec{u} \cdot \vec{v} = -8 + 12 = 4$$

4.
$$\vec{u} = 5\hat{i} + \hat{j}$$

$$\vec{v} = 3\hat{i} + 2\hat{j}$$

$$\vec{u} \cdot \vec{v} = 15 + 2 = 17$$

5.
$$\vec{u} = \hat{i}$$

$$\vec{v} = \hat{j}$$

$$\vec{u} \cdot \vec{v} = 1 \cdot 0 + 0 \cdot 1 = 0$$

6. If $\vec{v} = a\hat{i} + b\hat{j} + c\hat{k}$, prove that $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$. Give a coherent argument!

Clearly,
$$\|\vec{v}\|^2 = \left(\sqrt{a^2 + b^2 + c^2}\right)^2 = a^2 + b^2 + c^2$$
, and $\vec{v} \cdot \vec{v} = (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (a\hat{i} + b\hat{j} + c\hat{k}) = a^2 + b^2 + c^2$. Therefore, $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$.

- 7. Prove or give a counterexample: If you are given three vectors, \vec{u} , \vec{v} , and \vec{w} , and if $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, does it necessarily follow that $\vec{v} = \vec{w}$? Prove or give a counterexample.
 - The assertion is not true since, for example, if $\vec{u} = 0\hat{i} + 0\hat{j} + 0\hat{k}$ and if $\vec{v} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$, then $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$ but $\vec{v} \neq \vec{w}$.
- 8. Suppose $\vec{v} = \langle a,b,c \rangle$ and $\vec{w} = \langle d,e,f \rangle$, and suppose that for any vector \vec{u} we have $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$. Does it necessarily follow that $\vec{v} = \vec{w}$? Prove or give a counterexample.

If the assertion is true for any vector \vec{u} , then it is true for the vectors $\vec{u}_1 = <1,0,0>$, $\vec{u}_2 = <0,1,0>$, and $\vec{u}_3 = <0,0,1>$. Hence,

$$a = \vec{u}_1 \cdot \vec{v} = \vec{u}_1 \cdot \vec{w} = d$$

$$b = \vec{u}_2 \cdot \vec{v} = \vec{u}_2 \cdot \vec{w} = e .$$

$$c = \vec{u}_3 \cdot \vec{v} = \vec{u}_3 \cdot \vec{w} = f$$

Therefore, $\vec{v} = \vec{w}$ since the corresponding components of the two vectors are the same.