DOT PRODUCT

Find the dot product $\vec{u} \cdot \vec{v}$

1.
$$\vec{u} = 2\hat{i} + 3\hat{j} - 2\hat{k}$$
$$\vec{v} = -4\hat{i} + 4\hat{j} + 3\hat{k}$$

2.
$$\vec{u} = 4\hat{i} + 2\hat{j} + \hat{k}$$
$$\vec{v} = -\hat{i} + 4\hat{j} - 2\hat{k}$$

3.
$$\vec{u} = 2\hat{i} + 3\hat{j}$$
$$\vec{v} = -4\hat{i} + 4\hat{j}$$

4.
$$\vec{u} = 5\hat{i} + \hat{j}$$
$$\vec{v} = 3\hat{i} + 2\hat{j}$$

5.
$$\vec{u} = \hat{i}$$
$$\vec{v} = \hat{j}$$

6. If $\vec{v} = a\hat{i} + b\hat{j} + c\hat{k}$, prove that $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$. Give a coherent argument!

7. If you are given three vectors, \vec{u} , \vec{v} , and \vec{w} , and if $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, does it necessarily follow that $\vec{v} = \vec{w}$? Prove or give a counterexample.

8. Suppose $\vec{v} = \langle a,b,c \rangle$ and $\vec{w} = \langle d,e,f \rangle$, and suppose that for any vector \vec{u} we have $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$. Does it necessarily follow that $\vec{v} = \vec{w}$? Prove or give a counterexample.