GRADIENTS AND TANGENT PLANES

(1-6) For each of the following functions, use a gradient vector to find the equation of the tangent plane at the point $(1,1, f(1,1))$.

1. $z=f(x, y)=x^{3} y^{2}$
2. $z=f(x, y)=\sin \left(x^{3} y^{2}\right)$
3. $z=f(x, y)=\sqrt{x^{3} y^{2}}$
4. $z=f(x, y)=\sec \left(x^{3} y^{2}\right)$
5. $z=f(x, y)=\tan \left(x^{3} y^{2}\right)$
6. $z=f(x, y)=\sin ^{-1}\left(x^{3} y^{2}\right)$
7. Find the equation of the tangent plane to the surface $x^{2}+y^{2}+z^{2}=9$ at the point $P=(0,0,3)$.
8. Find the equation of the tangent plane to the surface $x^{2}+y^{2}-z^{2}=0$ at the point $P=(3,4,5)$.
