GRADIENTS AND TANGENT PLANES

(1-6) For each of the following functions, use a gradient vector to find the equation of the tangent plane at the point (1,1,f(1,1)).

1.
$$z = f(x, y) = x^3y^2$$

2.
$$z = f(x, y) = \sin(x^3 y^2)$$

3.
$$z = f(x, y) = \sqrt{x^3 y^2}$$

4.
$$z = f(x, y) = \sec(x^3 y^2)$$

5.
$$z = f(x, y) = \tan(x^3 y^2)$$

6.
$$z = f(x, y) = \sin^{-1}(x^3y^2)$$

- 7. Find the equation of the tangent plane to the surface $x^2 + y^2 + z^2 = 9$ at the point P = (0,0,3).
- 8. Find the equation of the tangent plane to the surface $x^2 + y^2 z^2 = 0$ at the point P = (3,4,5).