GREEN'S THEOREM AND STOKES' THEOREM

Use Green's Theorem (which in 2-dimensions is the same as Stokes’ Theorem),
Circulation $=\int_{C} \vec{F} \cdot T d s=\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{k} d A$, to measure the circulation around the boundary of the unit circle (oriented counterclockwise) caused by each of the following vector fields.

1. $\vec{F}=x \hat{i}+y \hat{j}$

2. $\vec{F}=-y \hat{i}+x \hat{j}$

3. $\vec{F}=y \hat{i}-x \hat{j}$

4. $\vec{F}=-x \hat{i}-y \hat{j}$

5. $\vec{F}=y \hat{i}+x \hat{j}$

6. $\vec{F}=4 x \hat{i}-3 y \hat{j}$

7. $\vec{F}=x y \hat{i}+(x+y) \hat{j}$
R is a triangular region defined by $0 \leq x \leq 1$ and $0 \leq y \leq-x+1$, and R is oriented counterclockwise. Use Green's Theorem to find the circulation around the curve created by the vector field \vec{F}.

8. $\vec{F}=x y \hat{i}+(x+y) \hat{j}$
R is a square region defined by $0 \leq x \leq 1$ and $0 \leq y \leq 1$, and R is oriented counterclockwise.
Use Green's Theorem to find the circulation around the curve created by the vector field \vec{F}.

9. $\vec{F}=x y \hat{i}+(x+y) \hat{j}$
R is the unit circle, and R is oriented counterclockwise.
Use Green's Theorem to find the circulation around the curve created by the vector field \vec{F}.

10. Evaluate $\int_{C} y e^{-x} d x+\left(x^{2} / 2-e^{-x}\right) d y$ where C is the circle of radius 1 with center at (2,0), oriented counterclockwise. (HINT: Use a change a variables to move the center to the origin, and then integrate using polar coordinates.)
