GREEN'S THEOREM AND STOKES' THEOREM

Use Green's Theorem (which in 2-dimensions is the same as Stokes' Theorem),

 $Circulation = \int_C \vec{F} \cdot T \, ds = \int_C \vec{F} \cdot d\vec{r} = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \iint_R \left(\nabla \times \vec{F} \right) \cdot \hat{k} \, dA$, to measure the circulation around the boundary of the unit circle (oriented counterclockwise) caused by each of the following vector fields.

$$6. \quad \vec{F} = 4x\hat{i} - 3y\hat{j}$$

7. $\vec{F} = xy\hat{i} + (x+y)\hat{j}$

R is a triangular region defined by $0 \le x \le 1$ and $0 \le y \le -x+1$, and *R* is oriented counterclockwise. Use Green's Theorem to find the circulation around the curve created by the vector field \vec{F} .

8. $\vec{F} = xy\hat{i} + (x+y)\hat{j}$

R is a square region defined by $0 \le x \le 1$ and $0 \le y \le 1$, and *R* is oriented counterclockwise. Use Green's Theorem to find the circulation around the curve created by the vector field \vec{F} .

9. $\vec{F} = xy\hat{i} + (x+y)\hat{j}$

R is the unit circle, and *R* is oriented counterclockwise. Use Green's Theorem to find the circulation around the curve created by the vector field \vec{F} .

10. Evaluate $\int_C ye^{-x} dx + (x^2/2 - e^{-x}) dy$ where *C* is the circle of radius 1 with center at (2,0), oriented counterclockwise. (HINT: Use a change a variables to move the center to the origin, and then integrate using polar coordinates.)