LAGRANGE MULTIPLIERS

Use the method of Lagrange multipliers to solve the following problems.

1. Find the coordinates of the maximum point on the graph of $z=x y+5$ subject to the constraint $x+y=2$.

2. Find the coordinates of the minimum point on the graph of $z=x^{2}+y^{2}+5$ subject to the constraint $x+y=2$.

3. Find the coordinates of the extreme points on the graph of $z=x^{2}-x y+y^{2}$ subject to the constraint $x^{2}+y^{2}=4$.

4. Let $w=x y z$ for $x>0, y>0$, and $z>0$. Find the maximum value of w subject to the constraint $x+y+z=48$.
5. A manufacturer has an order for 1000 ultra-deluxe time machines with built-in MP3 player. Suppose the units are manufactured in two different locations with x representing the number of units produced in one location and y the number of units in the other. If the total cost of production is given by $z=C(x, y)=x^{2}+10 x+0.50 y^{2}+12 y-10,000$ dollars, find the values of x and y that will minimize the costs and find the minimum cost.
6. Find the points on the circle $x^{2}+y^{2}=100$ that are closest to and farthest from the point $(2,3)$.
7. Find the area of the largest rectangle that can be inscribed inside the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
8. Find the volume of the largest rectangular box that can be inscribed inside the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
9. Use Lagrange multipliers to find the point in the plane $2 x+y-z=-5$ that is closest to the origin. (HINT: Minimize the square of the distance from the origin. You will get the same answer, but you won't have to mess with derivatives of square roots.)
10. A company operates two plants which manufacture the same item. Suppose that the total cost involved in producing quantities q_{1} and q_{2} at the two plants is $C=2 q_{1}{ }^{2}+q_{1} q_{2}+q_{2}{ }^{2}+1000$. Suppose also that the company's objective is to produce a total quantity of $q_{1}+q_{2}=100$ units. Find levels of production, q_{1} and q_{2}, that will minimize the cost.
