LINE INTEGRALS

- 1. Evaluate $\int_C xy \, ds$ where *C* is the unit circle traversed once in the counterclockwise direction.
- 2. Evaluate $\int_C xy dx$ where *C* is the unit circle traversed once in the counterclockwise direction.
- 3. Evaluate $\int_C xy \, dy$ where *C* is the unit circle traversed once in the counterclockwise direction.
- 4. Evaluate $\int_C xy \, ds$ where *C* is the straight line from (0,0) to (2,4).
- 5. Evaluate $\int_C xy \, dx$ where C is the straight line from (0,0) to (2,4).
- 6. Evaluate $\int_C xy \, dy$ where *C* is the straight line from (0,0) to (2,4).
- 7. Evaluate $\int_C x \, ds$ where C is the curve $y = x^2$ where $0 \le x \le 1$.
- 8. Evaluate $\int_C x \, dx$ where C is the curve $y = x^2$ where $0 \le x \le 1$.
- 9. Evaluate $\int_C x \, dy$ where C is the curve $y = x^2$ where $0 \le x \le 1$.
- 10. Suppose a wire is shaped into a path corresponding to $x = \cos t$, $y = \sin t$, and z = t/5 for $0 \le t \le 6\pi$, and suppose also that the density of the wire in terms of mass per unit of length changes with elevation according to the function w(x, y, z) = z. Then find the mass of the wire.