OTHER TRANSFORMATIONS - ANSWERS

1. Aliens who live in the 2-dimensional world of Flatland have built a giant 2dimensional wheel of radius 1 mile, and a coordinate system is set up so that the center of the wheel is situated at the origin. Furthermore, the wheel is slowly moving to the right at a rate of 1 mile per hour, and at the same time a bug, beginning at coordinates $(1,0)$ is walking the perimeter of the wheel counterclockwise at a rate of 1 mile per hour. Find a vector-valued function in the form $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ that describes the bug's position after t hours, and find $\vec{r}^{\prime}(t)$. Also, graph the bug's path over the interval $0 \leq t \leq 2 \pi$, and find the values for t in that interval corresponding to when the bug reaches its highest elevation and when it reaches its lowest elevation, and find the bug's speed at each of those points. (NOTE: The wheel moves to the right, but does not rotate.)

This type of problems is easily analyzed by thinking in terms of vector-valued functions. The circular motion as t goes from 0 to 2π is described by $\vec{r}_{1}(t)=\cos t \hat{i}+\sin t \hat{j}$. Since the radius is 1 mile and the bug is walking at 1 mph , after an hour the angle will be 1 radian, and after t hours it will be t radians. The straight line motion to the right, however, is described by $\vec{r}_{2}(t)=t \hat{i}$. Now just add these two motions together and we get $\vec{r}(t)=\vec{r}_{1}(t)+\vec{r}_{2}(t)=(t+\cos t) \hat{i}+\sin t \hat{j}$. Clearly the highest elevation the bug will reach will be 1 and the lowest will be -1 . These elevations will occur at $t=\frac{\pi}{2}$ and $t=\frac{3 \pi}{2}$. The derivative is $\vec{r}^{\prime}(t)=(1-\sin t) \hat{i}+\cos t \hat{j}$, and the corresponding speeds are $\left\|\vec{r}^{\prime}\left(\frac{\pi}{2}\right)\right\|=\sqrt{0^{2}+0^{2}}=0$ and $\left\|\vec{r}^{\prime}\left(\frac{3 \pi}{2}\right)\right\|=\sqrt{2^{2}+0^{2}}=2$. The graph below of $\vec{r}(t)$ is part of a cycloid.

2. Repeat problem 1, but this time assume that the bug is standing still on the wheel, and the wheel is rotating clockwise at a rate of 1 radian per hour.

Since $\cos (-t)=\cos (t)$ and $\sin (-t)=-\sin (t)$, we can parametrize the circular path by $\vec{r}_{1}(t)=\cos t \hat{i}-\sin (t) \hat{j}$ for $0 \leq t \leq 2 \pi$. Hence, our complete path is described by $\vec{r}(t)=\vec{r}_{1}(t)+\vec{r}_{2}(t)=(t+\cos t) \hat{i}-\sin (t) \hat{j}$, and again the path is part of a cycloid. The lowest elevation of -1 is reached when $t=\frac{\pi}{2}$, and the highest elevation of 1 is reached when $t=\frac{3 \pi}{2}$. Also, $\vec{r}^{\prime}(t)=(1-\sin t) \hat{i}-\cos (-t) \hat{j}=(1-\sin t) \hat{i}-\cos t \hat{j}$, and $\left\|\vec{r}^{\prime}\left(\frac{\pi}{2}\right)\right\|=0$, and $\left\|\vec{r}^{\prime}\left(\frac{3 \pi}{2}\right)\right\|=2$.

3. Repeat problem 2, but this time assume that the center of the circle is at $(0,1)$ and the bug is initially at $(1,1)$

All we need to do is set up one more vector-valued function to describe our final path. In particular, shift everything up one unit by letting $\vec{r}_{3}(t)=\hat{j}$ and $\vec{r}(t)=\vec{r}_{1}(t)+\vec{r}_{2}(t)+\vec{r}_{3}(t)=(t+\cos t) \hat{i}+(1-\sin (t)) \hat{j}$. Then $\vec{r}^{\prime}(t)=(1-\sin t) \hat{i}-\cos t \hat{j}$, the lowest elevation is zero when $t=\frac{\pi}{2}$ and 2 when $t=\frac{3 \pi}{2}$, and $\left\|\vec{r}^{\prime}\left(\frac{\pi}{2}\right)\right\|=0$, and $\left\|\vec{r}^{\prime}\left(\frac{3 \pi}{2}\right)\right\|=2$.

4. the x-axis
$\vec{r}(t, \theta)=t \hat{i}+\sqrt{t} \cos \theta \hat{j}+\sqrt{t} \sin \theta \hat{k}$
$0 \leq t \leq 3$
$0 \leq \theta \leq 2 \pi$

5. the y-axis

$$
\begin{aligned}
& \vec{r}(t, \theta)=\sqrt{t} \cos \theta \hat{i}+t \hat{j}+\sqrt{t} \sin \theta \hat{k} \\
& 0 \leq t \leq 3 \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

6. the line $y=x$ in the $x y$-plane
$\vec{r}(t, \theta)=\frac{\sqrt{t} \cos \theta+t}{\sqrt{2}} \hat{i}+\frac{-\sqrt{t} \cos \theta+t}{\sqrt{2}} \hat{j}+\sqrt{t} \sin \theta \hat{k}$
$0 \leq t \leq 3$
$0 \leq \theta \leq 2 \pi$

