GREEN'S THEOREM, STOKES' THEOREM, AND

GAUSS' THEOREM

Recall Green's Theorem:

Theorem: Let C be a smooth, simple closed curve in the plane that is oriented counter-clockwise, and let R be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains R, then,

$$
\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

If $\vec{F}=P \hat{i}+Q \hat{j}$ and $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ is a smooth parametrization for C, then we can rewrite our equation as follows.

$$
\begin{aligned}
& \text { Work }=\int_{C} \vec{F} \bullet d \vec{r}= \\
& \int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
\end{aligned}
$$

However, work is also a measure of circulation around a curve, and thus,

Circulation $=\int_{C} \vec{F} \cdot T d s=\int_{C} \vec{F} \cdot d \vec{r}$
$=\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$
$=\iint_{R}(\operatorname{curl} \vec{F}) \cdot \hat{k} d A=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{k} d A$

This result is known as the 2 -dimensional version of Stokes' Theorem.

$$
\begin{aligned}
& \text { Circulation }=\int_{C} \vec{F} \cdot T d s=\int_{C} \vec{F} \cdot d \vec{r} \\
& =\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\iint_{R}(\operatorname{curl} \vec{F}) \cdot \hat{k} d A=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{k} d A
\end{aligned}
$$

If we now go back to our parametrization for C, $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ with $a \leq t \leq b$, then the unit tangent is $T(t)=\frac{\vec{r}^{\prime}(t)}{\left\|r^{\prime}(t)\right\|}=\frac{x^{\prime}(t)}{\left\|r^{\prime}(t)\right\|} \hat{i}+\frac{y^{\prime}(t)}{\left\|r^{\prime}(t)\right\|} \hat{j}$, and the unit normal is $N(t)=\frac{y^{\prime}(t)}{\left\|r^{\prime}(t)\right\|} \hat{i}-\frac{x^{\prime}(t)}{\left\|r^{\prime}(t)\right\|} \hat{j}$.

Recall that the flux across the curve C produced by the force \vec{F} is $\int_{C} \vec{F} \bullet N d s$, and hence,

$$
\begin{aligned}
& \text { Flux }=\int_{C} \vec{F} \cdot N d s=\int_{a}^{b}(\vec{F} \cdot N) \frac{d s}{d t} d t \\
& =\int_{a}^{b}(P \hat{i}+Q \hat{j}) \cdot\left(\frac{y^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|} \hat{i}-\frac{x^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|} \hat{j}\right)\left\|\vec{r}^{\prime}(t)\right\| d t \\
& =\int_{a}^{b}(P \hat{i}+Q \hat{j}) \cdot\left(\frac{d y}{d t} \hat{i}-\frac{d x}{d t} \hat{j}\right) d t=\int_{a}^{b}\left(P \frac{d y}{d t}-Q \frac{d x}{d t}\right) d t \\
& =\int_{C} P d y-Q d x=\int_{C}-Q d x+P d y=\iint_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d A \\
& =\iint_{R} \operatorname{div} \vec{F} d A=\iint_{R}(\nabla \cdot \vec{F}) d A
\end{aligned}
$$

This result is known as the 2-dimension version of the Divergence Theorem or Gauss' Theorem.

$$
\begin{aligned}
& \text { Flux }=\int_{C} \vec{F} \cdot N d s=\int_{a}^{b}(\vec{F} \cdot N) \frac{d s}{d t} d t \\
& =\int_{a}^{b}(P \hat{i}+Q \hat{j}) \cdot\left(\frac{y^{\prime}(t)}{\left\|r^{\prime}(t)\right\|} \hat{i}-\frac{x^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|} \hat{j}\right)\left\|\vec{r}^{\prime}(t)\right\| d t \\
& =\int_{a}^{b}(P \hat{i}+Q \hat{j}) \cdot\left(\frac{d y}{d t} \hat{i}-\frac{d x}{d t} \hat{j}\right) d t=\int_{a}^{b}\left(P \frac{d y}{d t}-Q \frac{d x}{d t}\right) d t \\
& =\int_{C} P d y-Q d x=\int_{C}-Q d x+P d y=\iint_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d A \\
& =\iint_{R} \operatorname{div} \vec{F} d A=\iint_{R}(\nabla \cdot \vec{F}) d A
\end{aligned}
$$

To summarize, if $\vec{F}=P \hat{i}+Q \hat{j}, C$ is a closed, counterclockwise oriented path paramtrized by $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}, T$ is the unit tangent vector, and N is the unit normal vector, then:

GREEN'S THEOREM: Work $=\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$
STOKES' THEOREM: Circulation $=\int_{C} \vec{F} \cdot T d s=\int_{C} \vec{F} \bullet d \vec{r}$
$=\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\iint_{R}(\operatorname{curl} \vec{F}) \cdot \hat{k} d A=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{k} d A$
GAUSS' THEOREM: Flux $=\int_{C} \vec{F} \cdot N d s=\int_{C} P d y-Q d x=\int_{C}-Q d x+P d y$
$=\iint_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d A=\iint_{R} \operatorname{div} \vec{F} d A=\iint_{R}(\nabla \cdot \vec{F}) d A$

In higher dimensions, Stokes' Theorem and
Gauss' Theorem (the Divergence Theorem) look like this:

STOKES' THEOREM: Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \vec{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\operatorname{curl} F \bullet N) d S$.

GAUSS' THEOREM: Let V be a solid region whose boundary surface S has positive (outward) orientation. Let \vec{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then $\iint_{S} \vec{F} \bullet N d S=\iiint_{V} \operatorname{div} \vec{F} d V$

