TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION

Usually when we have a vector in space, we express that vector in terms of its i, j, and k components.

However, in physics it is often better to express an acceleration vector in terms of tangential and normal components.

How do we do that?

How do we do that? Easy!

Notice that if $\vec{r}(t)$ is a vector-valued function, then $\vec{v}(t)=\vec{r}^{\prime}(t)=\|\vec{v}(t)\| T$.

Notice that if $\vec{r}(t)$ is a vector-valued function, then $\vec{v}(t)=\vec{r}^{\prime}(t)=\|\vec{v}(t)\| T$.
Hence, $\vec{a}(t)=\vec{v}^{\prime}(t)=(\|\vec{v}(t)\| T)^{\prime}=\|\vec{v}(t)\|^{\prime} T+\|\vec{v}(t)\| T^{\prime}$
$=\|\vec{v}(t)\|^{\prime} T+\|\vec{v}(t)\|\left\|T^{\prime}\right\| \frac{T^{\prime}}{\left\|T^{\prime}\right\|}=\|\vec{v}(t)\|^{\prime} T+\|\vec{v}(t)\|\left\|T^{\prime}\right\| N$.

Thus,

$$
\begin{aligned}
& \vec{a}_{T}=\|\vec{v}(t)\|^{\prime} \\
& \vec{a}_{N}=\|\vec{v}(t)\|\left\|T^{\prime}\right\|
\end{aligned}
$$

However, it's easier to get a_{N} by using the Pythagorean Theorem.

$$
\begin{aligned}
& \vec{a}_{T}=\|\vec{v}(t)\|^{\prime} \\
& \vec{a}_{N}=\sqrt{\|\vec{a}(t)\|^{2}-\left(\vec{a}_{T}\right)^{2}}
\end{aligned}
$$

Also, an alternate way to get the tangential component is by taking the dot product of acceleration with the unit tangent vector.

$$
\begin{aligned}
& \vec{a}_{T}=\|\vec{v}(t)\|^{\prime} \\
& \vec{a}_{T}=\vec{a} \cdot T=\vec{a} \cdot \overrightarrow{\vec{a}} \| \overrightarrow{\vec{v}} \\
& \vec{a}_{N}=\sqrt{\|\vec{a}(t)\|^{2}-\left(\vec{a}_{T}\right)^{2}}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \vec{a}_{T}=\|\vec{v}(t)\|^{\prime} \\
& \vec{a}_{N}=\sqrt{\|\vec{a}(t)\|^{2}-\left(\vec{a}_{T}\right)^{2}}
\end{aligned}
$$

$$
\vec{r}(t)=t^{2} \hat{i}+t \hat{j}+t^{2} \hat{k}
$$

$$
\vec{v}(t)=2 t \hat{i}+\hat{j}+2 t \hat{k} \quad\|\vec{v}(t)\|=\sqrt{4 t^{2}+1+4 t^{2}}=\sqrt{8 t^{2}+1}
$$

$$
T=\frac{2 t}{\sqrt{8 t^{2}+1}} \hat{i}+\frac{1}{\sqrt{8 t^{2}+1}} \hat{j}+\frac{2 t}{\sqrt{8 t^{2}+1}} \hat{k}
$$

$$
\vec{a}(t)=2 \hat{i}+2 \hat{k}
$$

$$
\|\vec{a}(t)\|=\sqrt{4+4}=\sqrt{8}
$$

Example:

$$
\begin{aligned}
& \vec{a}_{T}=\|\vec{v}(t)\|^{\prime} \\
& \vec{a}_{N}=\sqrt{\|\vec{a}(t)\|^{2}-\left(\vec{a}_{T}\right)^{2}}
\end{aligned}
$$

$$
\vec{r}(t)=t^{2} \hat{i}+t \hat{j}+t^{2} \hat{k}
$$

$$
\vec{v}(t)=2 t \hat{i}+\hat{j}+2 t \hat{k} \quad\|\vec{v}(t)\|=\sqrt{4 t^{2}+1+4 t^{2}}=\sqrt{8 t^{2}+1}
$$

$$
T=\frac{2 t}{\sqrt{8 t^{2}+1}} \hat{i}+\frac{1}{\sqrt{8 t^{2}+1}} \hat{j}+\frac{2 t}{\sqrt{8 t^{2}+1}} \hat{k}
$$

$$
\vec{a}(t)=2 \hat{i}+2 \hat{k} \quad\|\vec{a}(t)\|=\sqrt{4+4}=\sqrt{8}
$$

$$
\vec{a}_{T}=\|\vec{v}(t)\|^{\prime}=\frac{1}{2}\left(8 t^{2}+1\right)^{-1 / 2}(16 t)=\frac{8 t}{\sqrt{8 t^{2}+1}}=\vec{a} \cdot T
$$

$$
\vec{a}_{N}=\sqrt{\|\vec{a}(t)\|^{2}-\left(\|\vec{v}(t)\|^{\prime}\right)^{2}}=\sqrt{8-\frac{64 t^{2}}{8 t^{2}+1}}=\sqrt{\frac{64 t^{2}+8-64 t^{2}}{8 t^{2}+1}}=\frac{2 \sqrt{2}}{\sqrt{8 t^{2}+1}}
$$

