CROSS-SECTIONS

Let's start with the function below and see how we can analyze it without, initially, looking at any graphs.

$$
z=x^{2}+y^{2}
$$

One thing we can notice immediately is that z is nonnegative. Thus, the entire graph must be on or above the $x y$-plane.

$$
z=x^{2}+y^{2}
$$

Now let's look at cross-sections that we can get by fixing z to various values.

$$
\begin{aligned}
z=x^{2}+y^{2} \\
z=0 \Rightarrow 0=x^{2}+y^{2} \\
z=1 \Rightarrow 1=x^{2}+y^{2} \\
z=2 \Rightarrow 2=x^{2}+y^{2} \\
z=3 \Rightarrow 3=x^{2}+y^{2} \\
z=4 \Rightarrow 4=x^{2}+y^{2}
\end{aligned}
$$

The solution to the first equation is the single point (0,0), but the subsequent equations represent equations for circles.

$$
z=x^{2}+y^{2}
$$

$$
\begin{aligned}
& z=0 \Rightarrow 0=x^{2}+y^{2} \\
& z=1 \Rightarrow 1=x^{2}+y^{2} \\
& z=2 \Rightarrow 2=x^{2}+y^{2} \\
& z=3 \Rightarrow 3=x^{2}+y^{2} \\
& z=4 \Rightarrow 4=x^{2}+y^{2}
\end{aligned}
$$

Thus, if $z>0$, then a horizontal cross-section of the graph of the function below is going to be a circle.

$$
z=x^{2}+y^{2}
$$

$$
\begin{aligned}
& z=0 \Rightarrow 0=x^{2}+y^{2} \\
& z=1 \Rightarrow 1=x^{2}+y^{2} \\
& z=2 \Rightarrow 2=x^{2}+y^{2} \\
& z=3 \Rightarrow 3=x^{2}+y^{2} \\
& z=4 \Rightarrow 4=x^{2}+y^{2}
\end{aligned}
$$

Now let's fix some values for x.

$$
\begin{aligned}
& z= x^{2}+y^{2} \\
& x=-2 \Rightarrow z=4+y^{2} \\
& x=-1 \Rightarrow z=1+y^{2} \\
& x=0 \Rightarrow z=y^{2} \\
& x=1 \Rightarrow z=1+y^{2} \\
& x=2 \Rightarrow z=4+y^{2}
\end{aligned}
$$

These are all equations for parabolas that open upward.

$$
\begin{aligned}
z= & x^{2}+y^{2} \\
& x=-2 \Rightarrow z=4+y^{2} \\
& x=-1 \Rightarrow z=1+y^{2} \\
& x=0 \Rightarrow z=y^{2} \\
& x=1 \Rightarrow z=1+y^{2} \\
& x=2 \Rightarrow z=4+y^{2}
\end{aligned}
$$

Thus, it appears that if we take a cross-section of our surface by fixing an x value, then the result is an upward opening parabola.

$$
\begin{aligned}
& z= x^{2}+y^{2} \\
& x=-2 \Rightarrow z=4+y^{2} \\
& x=-1 \Rightarrow z=1+y^{2} \\
& x=0 \Rightarrow z=y^{2} \\
& x=1 \Rightarrow z=1+y^{2} \\
& x=2 \Rightarrow z=4+y^{2}
\end{aligned}
$$

Finally, let's fix some y values.

$$
\begin{aligned}
z= & x^{2}+y^{2} \\
& y=-2 \Rightarrow z=x^{2}+4 \\
& y=-1 \Rightarrow z=x^{2}+1 \\
& y=0 \Rightarrow z=x^{2} \\
& y=1 \Rightarrow z=x^{2}+1 \\
& y=2 \Rightarrow z=x^{2}+4
\end{aligned}
$$

Again, we get equations for parabolas that open upward.

$$
\begin{aligned}
z= & x^{2}+y^{2} \\
& y=-2 \Rightarrow z=x^{2}+4 \\
& y=-1 \Rightarrow z=x^{2}+1 \\
& y=0 \Rightarrow z=x^{2} \\
& y=1 \Rightarrow z=x^{2}+1 \\
& y=2 \Rightarrow z=x^{2}+4
\end{aligned}
$$

This is why we are going to call the graph of this surface a paraboloid.

$$
\begin{aligned}
z= & x^{2}+y^{2} \\
& y=-2 \Rightarrow z=x^{2}+4 \\
& y=-1 \Rightarrow z=x^{2}+1 \\
& y=0 \Rightarrow z=x^{2} \\
& y=1 \Rightarrow z=x^{2}+1 \\
& y=2 \Rightarrow z=x^{2}+4
\end{aligned}
$$

Now let's put it all together.

$$
z=x^{2}+y^{2}
$$

We get (mostly) circular cross-sections by fixing z.

$$
z=x^{2}+y^{2}
$$

Parabolic cross-sections by fixing x.

$$
z=x^{2}+y^{2}
$$

And more parabolic cross-sections by fixing y.

$$
z=x^{2}+y^{2}
$$

These cross-sections give us a pretty good idea of what the graph of our surface looks like.

$$
z=x^{2}+y^{2}
$$

Now one more thing. If we graph the cross-sections obtained by fixing z on the surface itself, then we often call those cross-sections contours.

$$
z=x^{2}+y^{2}
$$

Now one more thing. If we graph the cross-sections obtained by fixing z on the surface itself, then we often call those cross-sections contours.

$$
z=x^{2}+y^{2}
$$

However, if we graph these same cross-sections in just the $x y$-plane, then we call them level curves.

$$
z=x^{2}+y^{2}
$$

Here is a graph of our surface with the level curves down below.

$$
z=x^{2}+y^{2}
$$

CAUTION: Some people use the term contours for both situations, and others use the term level curve for both.

$$
z=x^{2}+y^{2}
$$

Either way, cross-sections help us analyze the graph of a surface.

$$
z=x^{2}+y^{2}
$$

