

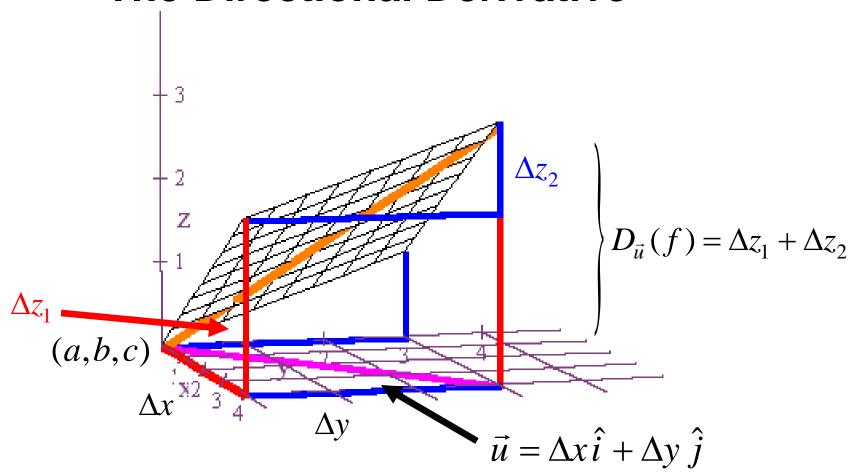
Suppose z=f(x,y) is differentiable at the point (a,b,c).

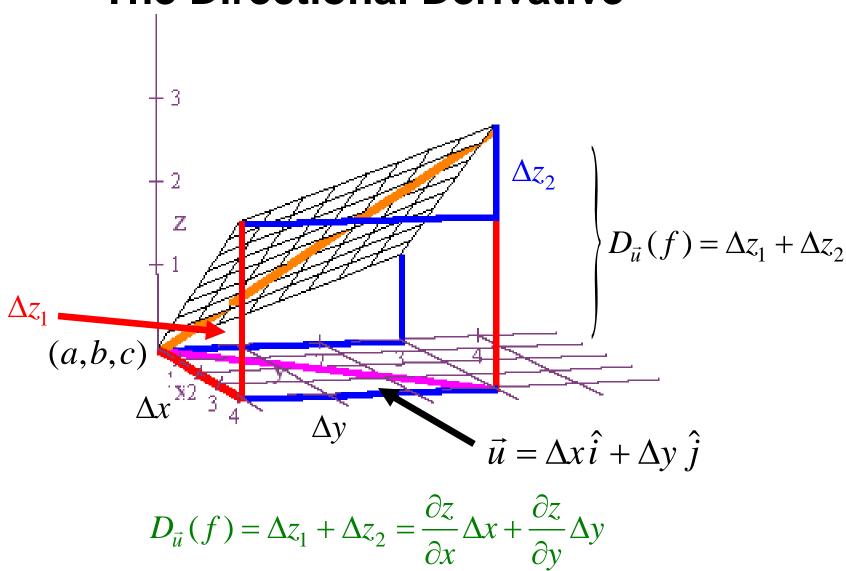
Suppose z=f(x,y) is differentiable at the point (a,b,c).

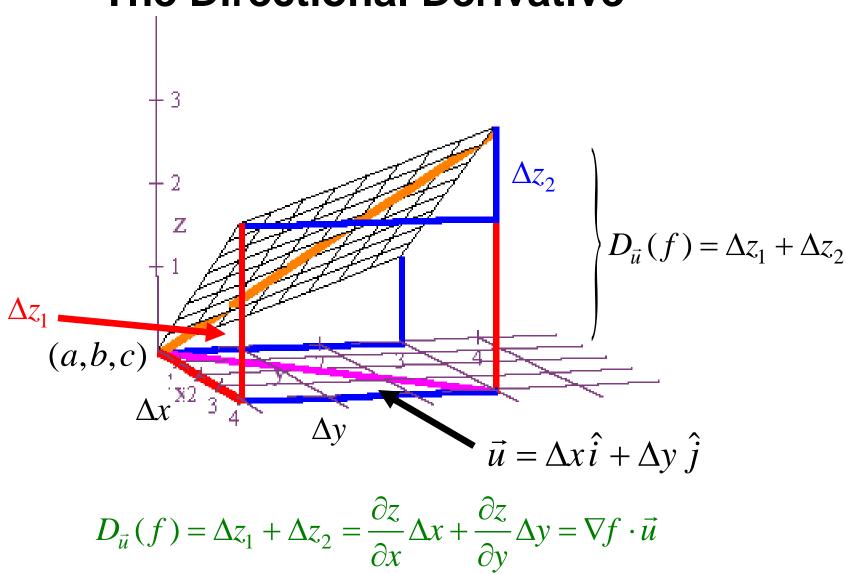
Let *u* be a unit vector pointing in the direction in which we want to find the derivative.

$$\vec{u} = \Delta x \,\hat{i} + \Delta y \,\hat{j}$$

directional derivative = $D_{\vec{u}}(f)$







In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its maximum?

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its maximum?

$$\theta = 0^{\circ} = 0$$
 radians

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its maximum?

$$\theta = 0^{\circ} = 0$$
 radians

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its minimum?

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its maximum?

$$\theta = 0^{\circ} = 0$$
 radians

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its minimum? $\theta = 180^{\circ} = \pi \ radians$

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its maximum?

$$\theta = 0^{\circ} = 0$$
 radians

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its minimum? $\theta = 180^{\circ} = \pi \ radians$

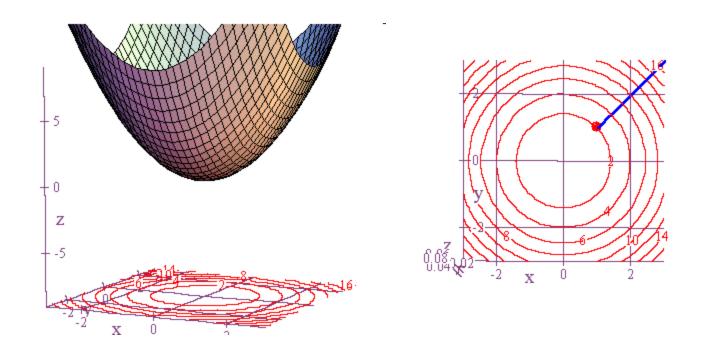
In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta = 0$?

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its maximum?

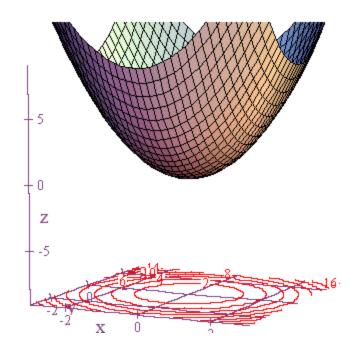
$$\theta = 0^{\circ} = 0$$
 radians

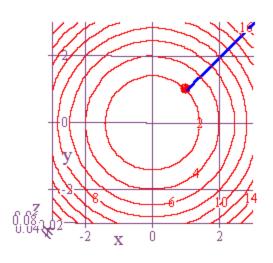
In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta$ at its minimum? $\theta = 180^{\circ} = \pi \ radians$

In what direction defined by θ is $D_{\vec{u}}(f) = \|\nabla f\| \cos \theta = 0$? $\theta = 90^{\circ} = \frac{\pi}{2} \ radians$

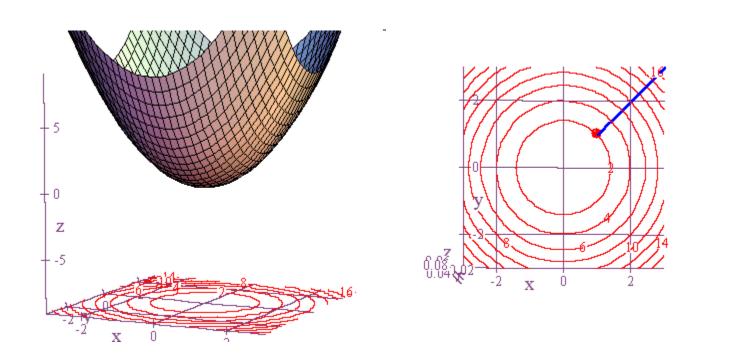


The gradient tells you what direction to move in in the *xy*-plane in order to make your output increase as quickly as possible. This direction maximizes the directional derivative.



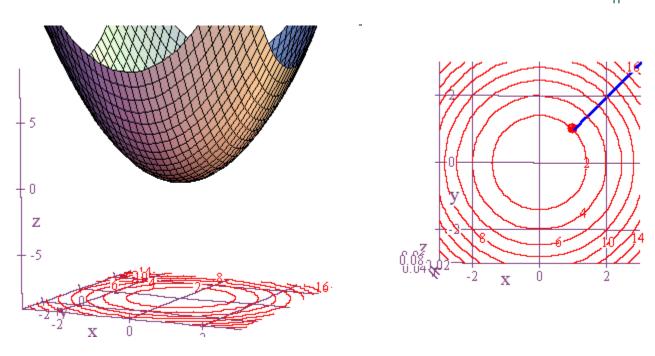


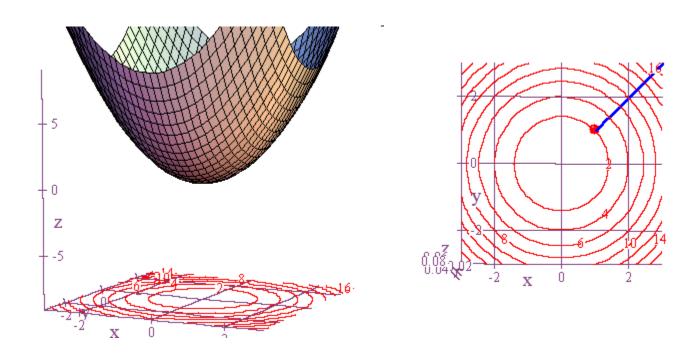
The maximum rate of change at a point is equal to $\|\nabla f\|$.



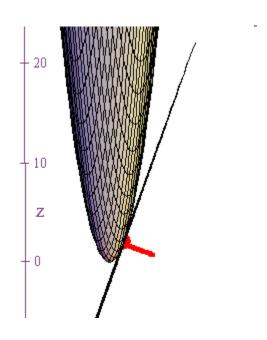
The maximum rate of change at a point is equal to $\|\nabla f\|$.

And the minimum rate of change is equal to $-\|\nabla f\|$.

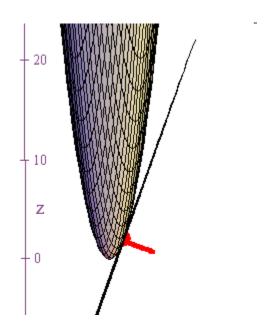




If you move in the direction of the gradient vector in 3-dimensional space, then your values for w = f(x, y, z) will increase at their most rapid rate.



And the maximum rate of change is equal to $\|\nabla f\|$.



And the minimum rate of change is equal to $-\|\nabla f\|$.

