## Properties of the Dot Product



If $a, b$, and $c$ are vectors and $k$ is a scalar, then,

$$
\begin{array}{ll}
\text { 1. } & \vec{a} \cdot \vec{a}=\|\vec{a}\|^{2} \\
\text { 2. } & \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \\
\text { 3. } & \vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} \\
\text { 4. } & (k \vec{a}) \cdot \vec{b}=k(\vec{a} \cdot \vec{b})=\vec{a} \cdot(k \vec{b}) \\
\text { 5. } & \overrightarrow{0} \cdot \vec{a}=0
\end{array}
$$

