
DOUBLE INTEGRALS
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Suppose we have a function ( , ) defined on a
region  in the -plane, and just to make life a little
easier, let's suppose that 0.  Then we can approximate
the volume between  and  by subdividin
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into subrectangles with sides  and y and evaluating
our function at an arbitrary point in each rectangle in order
to get a value to use as height.  We could then find the volume
of a box
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 erected over each subrectangle and make the following 
approximation of the volume.
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To get the exact volume we merely take a limit as x, y 0.Δ Δ →
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To get the exact volume we merely take a limit as x, y 0.Δ Δ →
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We call this result a double integral, and most people today
use two integral signs to denote it.  However, our book uses

an older notation involving just a single integral sign, ( , ) .
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THEOREM: If ( , ) is continuous on a rectangular region  
and if we partition  into a series of subrectangles with sides  and ,
then the double integral of ( , ) over  is defined by
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