
THE EPSILON-DELTA
DEFINITION
OF A LIMIT



In the beginning …



In the beginning …

Leibniz and Newton created/discovered Calculus



Calculus soon became the mathematics
of change.



Calculus studied rates of change (derivatives)
and accumulated change (integrals).



However, the foundations rested originally
on arguments that were very shaky.



Newton and Leibniz talked in terms of
infinitesimals.



An infinitesimal is supposed to be a 
number that is greater than zero, but
less than any positive number.



DUH?



Nonetheless, this illogic worked well
in practice.



To find the rate of change of the function
f(x)=x2, move an infinitesimal distance dx
away from x, and find the slope of the line
through (x, f(x)) and (x+dx, f(x+dx)).
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Since dx is infinitesimally small, discard it
and you get the correct result that the rate
of change is 2x.



In the 1700s, the theologian and 
philosopher Bishop Berkeley published
a scathing critique of the illogical 
methods of calculus.



THE
ANALYST

OR, A
DISCOURSE

Addressed to an
Infidel Mathematician,

WHEREIN
It is examined whether the Object, Principles, and

inferences of the modern analysis are more distinctly
conceived, or more evidently deduced, than 

religious mysteries and points of faith.



THE ANALYST pointed to a need to 
develop a foundation for calculus that did
not depend on infinitesimals.



To meet this need, the concept of a limit
was formulated.



Instead of saying that we take a point that 
is infinitesimally close to x, we simply ask
what happens as we let values get
arbitrarily close to x.



In particular, we often want to know 
whether f(x) gets closer to anything as 
our input values get closer to x.  If so,
then we call the value that f(x) gets close
to the limit.



However, the notion of “close,” while
maybe intuitively clear, is not really
well defined in the previous statement.



For a good definition of limit and what we
mean by close, we need the epsilon-delta
definition created by Karl Weierstrass in 
the 1800s.



Karl Weierstrass is known as the father of
modern analysis.  He started out as a 
high school teacher, but was later elevated
to professor at the Technical University
of Berlin as a result of the many brilliant 
papers he published.



He defined “closeness” in terms of being
within a distance epsilon from some
number.



In particular, we might paraphrase the
modern definition of a limit as follows:



In particular, we might paraphrase the
modern definition of a limit as follows:

To say that the limit of f(x) as x approaches
a is equal to L means that we can make the
value of f(x) within a distance of epsilon
units from L simply by making x within an
appropriate distance of delta units from x.



We write this more formally as follows:
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When I was young, we wrote this 
definition with even more mathematical
formalism:

lim ( ) 0, 0 0 ( ) .
x a

f x L x a f x Lε δ δ ε
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In this highly symbolic form, the upside down
capital “A” means “for every,” and the 
backwards “E” means “there exists.”
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So what does this actually mean?



So what does this actually mean?

It means that if we specify any positive number
epsilon, then we can always find a sufficiently
small number delta such that if the distance
between x and a is less than delta but greater 
than zero, then the distance between f(x) and L
will be less than epsilon.  If this works no matter
how small we make epsilon, then L is the limit of
our function as x approaches a.



Why do we require the distance between
x and a to be greater than zero?



Why do we require the distance between
x and a to be greater than zero?

Recall that the whole purpose of limits is to let
us more rigorously define things such as the
derivative.



In modern notation we write:
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In modern notation we write:

( ) ( )( ) lim
x a

f x f af x
x a→

−′ =
−

If we let x equal a in this expression, then we
are dividing by zero, and the universe as we
know it ceases to exist.



Thus, in the concept of the limit as x goes to a,
we always want to consider what happens as 
x gets close to a while remaining different from
a.



This practice also works well in those instances
where a function may not even be defined at a,
or in cases where the function value at a may be 
different from the limit value.
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KEY THEOREMS ABOUT LIMITS
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CONTINUITY

A function f(x) is continuous at a if:
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CONTINUITY

A funcion f(x) is continuous at a if:
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KEY THEOREMS ABOUT CONTINUITY

If f and g are continuous at a and if c is a 
constant, then the following functions are 
also continuous at a.
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LIMITS FOR FUNCTIONS OF TWO VARIABLES

Definition: The disk D with center (a,b) and 
radius r is defined as:

( ) ( ){ }2 2( , ) :D x y x a y b r= − + − ≤



LIMITS FOR FUNCTIONS OF TWO VARIABLES

Let f be a function of two variables defined on
a disk D with center (a,b).  Then,
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EXAMPLES:
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Approach (0,0) first along the x-axis and then
the y-axis.



EXAMPLES:
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Approach (0,0) first along the x-axis, then
along the y-axis, and finally along the line y=x.



EXAMPLES:
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Approach (0,0) first along the x-axis, then
along the y-axis, then along any line y=mx,
and finally along the parabola y=x2.



Prove:
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Is f(x,y) continuous at (2,3)?
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Is f(x,y) continuous at (0,0)?
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Is f(x,y) continuous at (0,0)?
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