EXTRA STOKES

One can never do too much work!

$$
\begin{aligned}
\vec{F} & =-y \hat{i}+x \hat{j} \\
C & =C_{1}+C_{2}+C_{3}
\end{aligned}
$$

We could find the work done by the vector field by evaluating it along each path.
$\vec{F}=-y \hat{i}+x \hat{j}$
$C=C_{1}+C_{2}+C_{3}$

We could find the work done by the vector field by evaluating it along each path.
$\vec{F}=-y \hat{i}+x \hat{j}$
$C=C_{1}+C_{2}+C_{3}$

$$
\begin{array}{rll}
C_{1}: & x=t & d x / d t=1 \\
& y=0 & d y / d t=0 \\
& z=1-t & d z / d t=-1 \\
& 0 \leq t \leq 1 &
\end{array}
$$

$$
\begin{aligned}
& \int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{1}} P d x+Q d y+R d z \\
& =\int_{0}^{1}(-0 \cdot 1+t \cdot 0+0 \cdot-1) d t=0
\end{aligned}
$$

We could find the work done by the vector field by evaluating it along each path.
$\vec{F}=-y \hat{i}+x \hat{j}$
$C=C_{1}+C_{2}+C_{3}$
$(0,0,1) \quad z=-x-y+1$

$$
\begin{aligned}
& \int_{C_{2}} \vec{F} \cdot d \vec{r}=\int_{C_{2}} P d x+Q d y+R d z \\
& =\int_{0}^{1}(-t \cdot-1+[1-t] \cdot 1+0 \cdot 0) d t=1
\end{aligned}
$$

We could find the work done by the vector field by evaluating it along each path.
$\vec{F}=-y \hat{i}+x \hat{j}$
$C=C_{1}+C_{2}+C_{3}$

$$
\begin{array}{rlrl}
C_{3}: & x & =0 & d x / d t=0 \\
& y & =1-t & d y / d t=-1 \\
& z=t & d z / d t=1 \\
& 0 \leq t \leq 1 &
\end{array}
$$

$\int_{C_{3}} \vec{F} \cdot d \vec{r}=\int_{C_{3}} P d x+Q d y+R d z$
$=\int_{0}^{1}([-1+t] \cdot 0+0 \cdot-1+0 \cdot 1) d t=0$

We could also evaluate the work done by the vector field by evaluating it along each path.
$\vec{F}=-y \hat{i}+x \hat{j}$
$C=C_{1}+C_{2}+C_{3}$

Therefore,

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C_{1}} \vec{F} \cdot d \vec{r}+\int_{C_{2}} \vec{F} \cdot d \vec{r}+\int_{C_{3}} \vec{F} \cdot d \vec{r}=0+1+0=1
$$

We could also find the work done by using our more familiar version of Stokes' Theorem.
$\vec{F}=-y \hat{i}+x \hat{j}$
$C=C_{1}+C_{2}+C_{3}$

$$
\begin{aligned}
& z=-x-y+1 \\
& g=x+y+z \\
& \nabla g=\hat{i}+\hat{j}+\hat{k} \\
& \nabla \times \vec{F}=2 \hat{k}
\end{aligned}
$$

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \nabla g d A=\iint_{R}(2 \hat{k}) \cdot(\hat{i}+\hat{j}+\hat{k}) d A=\iint_{R} 2 d A=2 \cdot \frac{1}{2}=1
$$

