FUNCTIONS OF SEVERAL VARIABLES

What is a function of several variables?

What is a function of several variables?

A function of several variables is an expression in which the value of a single output is determined by the values of two or more inputs.

What is a function of several variables?

A function of several variables is an expression in which the value of a single output is determined by the values of two or more inputs.

As usual, a set of specific values for the inputs always determines a specific value for the output.

Examples:

1. Area $=$ Length \times Width

Examples:

1. Area $=$ Length \times Width
 2. Perimeter $=2 L+2 W$

Examples:

$$
\begin{aligned}
& \text { 1. } \text { Area }=\text { Length } \times \text { Width } \\
& \text { 2. } \\
& \text { Perimeter }=2 L+2 W \\
& \text { 3. } A=P\left(1+\frac{r}{n}\right)^{n t}
\end{aligned}
$$

Examples:

$$
\begin{array}{ll}
\text { 1. } & \text { Area }=\text { Length } \times \text { Width } \\
\text { 2. } & \text { Perimeter }=2 L+2 W \\
\text { 3. } & A=P\left(1+\frac{r}{n}\right)^{n t} \\
\text { 4. } & z=f(x, y)=x^{2}+y^{2}
\end{array}
$$

A function of several variables may be expressed in several different ways.

Verbally:

"The output is the sum of the squares of the two inputs."

Algebraically:

$$
z=f(x, y)=x^{2}+y^{2}
$$

Numerically:

xly	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{- 2}$	8	5	4	5	8
$\mathbf{- 1}$	5	2	1	2	5
$\mathbf{0}$	4	1	0	1	4
$\mathbf{1}$	5	2	1	2	5
$\mathbf{2}$	8	5	4	5	8

Or Graphically:

PLOTTING POINTS

We can locate positions in 3-dimensional space by establishing an x-axis, y-axis, and z-axis, and then specifying an x-coordinate, y-coordinate, and z-coordinate for particular points.

$$
(x, y, z)=(4,2,3)
$$

This orientation called a right-hand coordinate system.

We can use the function below to generate the coordinates of points to plot.

$$
z=f(x, y)=x^{2}+y^{2}
$$

xly	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{- 2}$	8	5	4	5	8
$\mathbf{- 1}$	5	2	1	2	5
$\mathbf{0}$	4	1	0	1	4
$\mathbf{1}$	5	2	1	2	5
$\mathbf{2}$	8	5	4	5	8

And from there it's just a matter of plotting points

 until the plot thickens!

The graph of $\mathrm{z}=0$ is the xy -plane.

The graph of $x=0$ is the $y z-p l a n e$.

The graph of $\mathrm{y}=0$ is the xz -plane.

