FUNCTIONS OF SEVERAL VARIABLES

What is a function of several variables?

What is a function of several variables?

A function of several variables is an expression in which the value of a single output is determined by the values of two or more inputs.

What is a function of several variables?

A function of several variables is an expression in which the value of a single output is determined by the values of two or more inputs.

As usual, a set of specific values for the inputs always determines a specific value for the output.

1. $Area = Length \times Width$

Examples:

1. $Area = Length \times Width$

2. Perimeter = 2L + 2W

Examples:

1. Area = Length × Width
2. Perimeter =
$$2L + 2W$$

$$3. \quad A = P\left(1 + \frac{r}{n}\right)$$

Examples:

1. $Area = Length \times Width$ 2. Perimeter = 2L + 2W

$$3. \quad A = P\left(1 + \frac{r}{n}\right)^{nt}$$

4.
$$z = f(x, y) = x^2 + y^2$$

A function of several variables may be expressed in several different ways.

Verbally:

"The output is the sum of the squares of the two inputs."

Algebraically:

$z = f(x, y) = x^2 + y^2$

Numerically:

x\y	-2	-1	0	1	2
-2	8	5	4	5	8
-1	5	2	1	2	5
0	4	1	0	1	4
1	5	2	1	2	5
2	8	5	4	5	8

Or Graphically:

PLOTTING POINTS

We can locate positions in 3-dimensional space by establishing an x-axis, y-axis, and z-axis, and then specifying an x-coordinate, y-coordinate, and z-coordinate for particular points.

$$(x, y, z) = (4, 2, 3)$$

This orientation called a right-hand coordinate system.

We can use the function below to generate the coordinates of points to plot.

$$z = f(x, y) = x^2 + y^2$$

x\y	-2	-1	0	1	2
-2	8	5	4	5	8
-1	5	2	1	2	5
0	4	1	0	1	4
1	5	2	1	2	5
2	8	5	4	5	8

And from there it's just a matter of plotting points until the plot thickens!

The graph of z=0 is the xy-plane.

The graph of x=0 is the yz-plane.

The graph of y=0 is the xz-plane.

