
The Gradient and Level Curves



Definition: A parametrized curve r(t) is called smooth
if r΄(t) is continuous and r΄(t) is never the zero vector
(except possibly at the endpoints).



Theorem: Let z=f(x,y) be differentiable at (a,b) and let
f(a,b)=c.  Also, let C be the level curve f(x,y)=c
that passes through (a,b).  If C is smooth with smooth
paramtrization r(t) and if grad f(a,b) is not equal to 0, 
then grad f(a,b) is normal to C at (a,b).  
In other words, grad f is perpendicular to r΄(t) at (a,b).

NOTE: Another notation for the gradient of  is .f f∇
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A similar proof can be constructed to show that if ( , , ),  

ˆˆ ˆthen the gradient vector  evaluated at

( , , ) is normal to the level surface ( , , ).
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Also, if this gradient vector is normal to the level surface 

 at the point then we should be 
able to use this information to find the tangent plane
at this point.
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Notice that

is the same result we found previously for the 
equation of a tangent plane.


