The Gradient and Level Curves

Definition: A parametrized curve $r(t)$ is called smooth if $r^{\prime}(t)$ is continuous and $r^{\prime}(t)$ is never the zero vector (except possibly at the endpoints).

Theorem: Let $z=f(x, y)$ be differentiable at (a, b) and let $f(a, b)=c$. Also, let C be the level curve $f(x, y)=c$ that passes through (a, b). If C is smooth with smooth paramtrization $r(t)$ and if grad $f(a, b)$ is not equal to 0 , then $\operatorname{grad} f(a, b)$ is normal to C at (a, b).
In other words, $g r a d ~ f$ is perpendicular to $r^{\prime}(t)$ at (a, b).

NOTE: Another notation for the gradient of f is ∇f.

Theorem: Let $z=f(x, y)$ be differentiable at (a, b) and let $f(a, b)=c$. Also, let C be the level curve $f(x, y)=c$ that passes through (a, b). If C is smooth and $\operatorname{grad} f(a, b)$ is not equal to 0 , then $\operatorname{grad} f(a, b)$ is normal to C at (a, b).

Proof:

Let $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ with $t \in I$ be a smooth parametrization for C.

Theorem: Let $z=f(x, y)$ be differentiable at (a, b) and let $f(a, b)=c$. Also, let C be the level curve $f(x, y)=c$ that passes through (a, b). If C is smooth and $\operatorname{grad} f(a, b)$ is not equal to 0 , then $\operatorname{grad} f(a, b)$ is normal to C at (a, b).

Proof:

Let $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ with $t \in I$ be a smooth parametrization for C.
Then $f(x, y)=f(x(t), y(t))=c \quad$ for $t \in I$.

Theorem: Let $z=f(x, y)$ be differentiable at (a, b) and let $f(a, b)=c$. Also, let C be the level curve $f(x, y)=c$ that passes through (a, b). If C is smooth and $\operatorname{grad} f(a, b)$ is not equal to 0 , then $\operatorname{grad} f(a, b)$ is normal to C at (a, b).

Proof:

Let $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ with $t \in I$ be a smooth parametrization for C.
Then $f(x, y)=f(x(t), y(t))=c$ for $t \in I$.

Hence, $0=\frac{d c}{d t}=\frac{d f(x(t), y(t))}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\nabla f \cdot \frac{d \vec{r}}{d t}$.

Theorem: Let $z=f(x, y)$ be differentiable at (a, b) and let $f(a, b)=c$. Also, let C be the level curve $f(x, y)=c$ that passes through (a, b). If C is smooth and $\operatorname{grad} f(a, b)$ is not equal to 0 , then $\operatorname{grad} f(a, b)$ is normal to C at (a, b).

Proof:

Let $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ with $t \in I$ be a smooth parametrization for C.
Then $f(x, y)=f(x(t), y(t))=c$ for $t \in I$.

Hence, $0=\frac{d c}{d t}=\frac{d f(x(t), y(t))}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\nabla f \cdot \frac{d \vec{r}}{d t}$.
Therefore, ∇f is normal to C at (a, b).

EXAMPLE: Let $z=f(x, y)=x^{2}+y^{2}$ and $P=(1,1,2)$.

EXAMPLE: Let $z=f(x, y)=x^{2}+y^{2}$ and $P=(1,1,2)$.

$$
\nabla f=2 x \hat{i}+2 y \hat{j}
$$

EXAMPLE: Let $z=f(x, y)=x^{2}+y^{2}$ and $P=(1,1,2)$.
$\nabla f=2 x \hat{i}+2 y \hat{j}$
$\nabla f(1,1)=2 \hat{i}+2 \hat{j}$

EXAMPLE: Let $z=f(x, y)=x^{2}+y^{2}$ and $P=(1,1,2)$.

$$
\begin{aligned}
& \nabla f=2 x \hat{i}+2 y \hat{j} \\
& \nabla f(1,1)=2 \hat{i}+2 \hat{j}
\end{aligned}
$$

A similar proof can be constructed to show that if $w=f(x, y, z)$, then the gradient vector $\nabla w=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}+\frac{\partial f}{\partial z} \hat{k}$ evaluated at (a, b, c) is normal to the level surface $w=f(a, b, c)$.

EXAMPLE: Let $z=f(x, y)=x^{2}+y^{2}$ and $P=(1,1,2)$.

EXAMPLE: Let $z=f(x, y)=x^{2}+y^{2}$ and $P=(1,1,2)$.

Then we can think of this function as the level surface
$w=0$ for $w=x^{2}+y^{2}-z$.

EXAMPLE: Let $z=f(x, y)=x^{2}+y^{2}$ and $P=(1,1,2)$.

Then we can think of this function as the level surface
$w=0$ for $w=x^{2}+y^{2}-z$.

Furthermore,
$\nabla w=2 x \hat{i}+2 y \hat{j}-\hat{k}$, and
$\nabla w(1,1,2)=2 \hat{i}+2 \hat{j}-\hat{k}$

EXAMPLE: Let $z=f(x, y)=x^{2}+y^{2}$ and $P=(1,1,2)$.

Then we can think of this function as the level surface
$w=0$ for $w=x^{2}+y^{2}-z$.

Furthermore,
$\nabla w=2 x \hat{i}+2 y \hat{j}-\hat{k}$, and
$\nabla w(1,1,2)=2 \hat{i}+2 \hat{j}-\hat{k}$

Also, if this gradient vector is normal to the level surface $0=x^{2}+y^{2}-z$, at the point $P=(1,1,2)$, then we should be able to use this information to find the tangent plane at this point.

$$
\begin{aligned}
& z=f(x, y)=x^{2}+y^{2} \\
& P=(1,1,2) \\
& 0=x^{2}+y^{2}-z \\
& w=x^{2}+y^{2}-z
\end{aligned}
$$

$\nabla w=2 x \hat{i}+2 y \hat{j}-\hat{k}$
$\nabla w(1,1,2)=2 \hat{i}+2 \hat{j}-\hat{k}$

$$
\begin{array}{ll}
z=f(x, y)=x^{2}+y^{2} & \\
P=(1,1,2) & \\
0=x^{2}+y^{2}-z & \\
w=x^{2}+y^{2}-z & Q=(x, y, z) \\
\nabla w=2 x \hat{i}+2 y \hat{j}-\hat{k} & \overrightarrow{P Q}=(x-1) \hat{i}+(y-1) \hat{j}+(z-2) \hat{k} \\
\nabla w(1,1,2)=2 \hat{i}+2 \hat{j}-\hat{k} &
\end{array}
$$

$\nabla w(1,1,2) \cdot \overrightarrow{P Q}=0$

$$
2(x-1)+2(y-1)-1(z-2)=0
$$

$$
\Rightarrow 2 x+2 y-z-2=0
$$

$$
\Rightarrow z=2 x+2 y-2
$$

$$
\begin{aligned}
& z=f(x, y)=x^{2}+y^{2} \\
& P=(1,1,2) \\
& 0=x^{2}+y^{2}-z \\
& w=x^{2}+y^{2}-z \\
& \nabla w=2 x \hat{i}+2 y \hat{j}-\hat{k} \\
& \begin{aligned}
\nabla w(1,1,2)=2 \hat{i}+2 \hat{j}-\hat{k}
\end{aligned} \\
& \qquad \begin{array}{r}
2(x-1)+2(y-1)-1(z-2)=0 \\
\\
\Rightarrow 2 x+2 y-z-2=0 \\
\Rightarrow z=2 x+2 y-2
\end{array}
\end{aligned}
$$

Notice that

$2(x-1)+2(y-1)-1(z-2)=0$
$\Rightarrow \frac{\partial f(a, b)}{\partial x}(x-a)+\frac{\partial f(a, b)}{\partial y}(y-b)-(z-f(a, b))=0$
$\Rightarrow z=\frac{\partial f(a, b)}{\partial x}(x-a)+\frac{\partial f(a, b)}{\partial y}(y-b)+f(a, b)$
is the same result we found previously for the equation of a tangent plane.

