DIVERGENCE THEOREM IN HIGHER DIMENSIONS

To find the flux across a closed, counterclockwise oriented plane curve caused by a vector field $F=<P, Q>$, we used the following formula along with an outward pointing unit normal vector N.

Flux $=\int_{C} F \cdot N d s=\iint_{R} \operatorname{div} F d A=\iint_{R}(\nabla \cdot F) d A=\iint_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d A$

In higher dimensions, we have a similar formula involving an outward pointing unit normal vector N.

$$
\begin{aligned}
& \text { 2d-Flux }=\int_{C} F \cdot N d s=\iint_{R} \operatorname{div} F d A=\iint_{R}(\nabla \cdot F) d A \\
& \text { 3d-Flux }=\iint_{S} F \cdot N d S=\iiint_{V} \operatorname{div} F d V=\iiint_{V} \nabla \cdot F d V \\
&
\end{aligned}
$$

Let's do a problem!

$$
\iint_{S} F \cdot N d S=\iiint_{V} \operatorname{div} F d V=\iiint_{V} \nabla \cdot F d V
$$

V is the solid ball with surface S defned by $x^{2}+y^{2}+z^{2}=4$
$F=x \hat{i}+y \hat{j}+z \hat{k}$

Just integrate!

$$
\iint_{S} F \cdot N d S=\iiint_{V} \operatorname{div} F d V=\iiint_{V} \nabla \cdot F d V
$$

V is the solid ball with surface S defned by $x^{2}+y^{2}+z^{2}=4$

$$
F=x \hat{i}+y \hat{j}+z \hat{k}
$$

$$
\iint_{S} F \cdot N d S=\iiint_{V} \nabla \cdot F d V=\iiint_{V}(1+1+1) d V=3 \iiint_{V} d V=3 \cdot \frac{4 \pi}{3} \cdot 2^{3}=32 \pi
$$

It's so easy, a highly intelligent caveman could do it!

$$
\iint_{S} F \cdot N d S=\iiint_{V} \operatorname{div} F d V=\iiint_{V} \nabla \cdot F d V
$$

V is the solid ball with surface S defned by $x^{2}+y^{2}+z^{2}=4$

$$
F=x \hat{i}+y \hat{j}+z \hat{k}
$$

$$
\iint_{S} F \cdot N d S=\iiint_{V} \nabla \cdot F d V
$$

$$
\iint_{S} F \cdot N d S=\iiint_{V} \nabla \cdot F d V=\iiint_{V}(1+1+1) d V=3 \iiint_{V} d V=3 \cdot \frac{4 \pi}{3} \cdot 2^{3}=32 \pi
$$

