
DIVERGENCE THEOREM IN
HIGHER DIMENSIONS



To find the flux across a closed, counterclockwise
oriented plane curve caused by a vector field
F=<P,Q>, we used the following formula along with
an outward pointing unit normal vector N.
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In higher dimensions, we have a similar formula
involving an outward pointing unit normal vector N.
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Let’s do a problem!
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Just integrate!
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It’s so easy, a highly intelligent caveman could do it!
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