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Find .
C

F xi yj C

F dr

= +

∫

G

G Gi

2 2In this case, if ( , ) , then .  Thus, the integral

is independent of path and (2,2) (1,1) 8 2 6.
C

f x y x y f F

F dr f f

= + ∇ =

= − = − =∫

G

G Gi



2 2ˆ ˆExample 2: If (3 2 ) ( 3 ) ,  show that 

is independent of path.
C

F xy i x y j F dr= + + − ∫
G G Gi

2 2Let 3 2  and 3 .  Then 2 .

Therefore,  for some function ( , ),  and 

 is independent of path.
C

P QP xy Q x y x
y x

F f z f x y

F dr

∂ ∂
= + = − = =

∂ ∂
= ∇ =

∫
G Gi
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