Independence of Path

DEFINITION: A vector field $\vec{F}=P \hat{i}+Q \hat{j}$ is conservative if $\vec{F}=\nabla f$ for some function $z=f(x, y)$. In this case, f is called the potential function for \vec{F}.

DEFINITION: The line integral $\int_{C} \vec{F} \bullet d \vec{r}$ is independent of path
if $\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{2}} \vec{F} \cdot d \vec{r}$ for any two paths C_{1} and C_{2} that have the
same initial and terminal points.

THEOREM: The line integral $\int_{C} \vec{F} \cdot d \vec{r}$ is independent of path in D
if and only if $\int_{C} \vec{F} \cdot d \vec{r}=0$ for every closed path C in D.

The Fundamental Theorem of Line Integrals: Let C be a smooth curve with a smooth parametrization $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ for $a \leq t \leq b$, and let $z=f(x, y)$ be a function whose gradient ∇f is continuous on C. Then $\int_{C} \nabla f \cdot d \vec{r}=f(x(b), y(b))-f(x(a), y(a))$.

$$
\begin{aligned}
& \text { PROOF: } \int_{C} \nabla f \cdot d \vec{r}=\int_{a}^{b}\left(\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}\right) \cdot \frac{d \vec{r}}{d t} d t \\
& =\int_{a}^{b}\left(\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}\right) \cdot\left(\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}\right) d t=\int_{a}^{b}\left(\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}\right) d t \\
& =\int_{a}^{b} \frac{d f}{d t} d t=f(x(b), y(b))-f(x(a), y(a)) .
\end{aligned}
$$

DEFINITION: A region R is connected if any two points in R can be joined by a path C that lies in R. A connected region R is simply connected if it contains no holes.

THEOREM: Let $\vec{F}=P \hat{i}+Q \hat{j}$ be a vector field defined on an open simply connected region R, let C be a smooth curve in R, and suppose P and Q have continuous first order derivatives in R. Then the following are equivalent.

1. $\vec{F}=P \hat{i}+Q \hat{j}$ is conservative.
2. $\vec{F}=\nabla f$ for some function $z=f x, y)$.
3. $\int_{C} \vec{F} \bullet d \vec{r}$ is independent of path.
4. $\int_{C} \vec{F} \bullet d \vec{r}=0$ for every closed curve C in R.
5. $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.
6.curl $\vec{F}=\nabla \times \vec{F}=\overrightarrow{0}$

Example $1: \vec{F}=2 x \hat{i}+2 y \hat{j}$ and C is any path from $(1,1)$ to $(2,2)$.
Find $\int_{C} \vec{F} \cdot d \vec{r}$.

In this case, if $f(x, y)=x^{2}+y^{2}$, then $\nabla f=\vec{F}$. Thus, the integral is independent of path and $\int_{C} \vec{F} \cdot d \vec{r}=f(2,2)-f(1,1)=8-2=6$.

Example 2: If $\vec{F}=(3+2 x y) \hat{i}+\left(x^{2}-3 y^{2}\right) \hat{j}$, show that $\int_{C} \vec{F} \cdot d \vec{r}$ is independent of path.

Let $P=3+2 x y$ and $Q=x^{2}-3 y^{2}$. Then $\frac{\partial P}{\partial y}=2 x=\frac{\partial Q}{\partial x}$.
Therefore, $F=\nabla f$ for some function $z=f(x, y)$, and
$\int_{C} \vec{F} \bullet d \vec{r}$ is independent of path.

Example 3: If $\vec{F}=(3+2 x y) \hat{i}+\left(x^{2}-3 y^{2}\right) \hat{j}$, find a potential function $z=f(x, y)$.

Let $P=3+2 x y$ and $Q=x^{2}-3 y^{2}$. Then $\int P d x=3 x+x^{2} y+g(y)$.
Differentiate this result with respect to y and you get $x^{2}+g^{\prime}(y)$.
Comparing this result with $Q=x^{2}-3 y^{2}$, we see that we want $g^{\prime}(y)=-3 y^{2}$. An antiderivative of this with respect to y is $-y^{3}$.
Hence, it suffices to let $f(x, y)=3 x+x^{2} y-y^{3}$.

Example 4: If $\vec{F}=(3+2 x y) \hat{i}+\left(x^{2}-3 y^{2}\right) \hat{j}$, find $\int_{C} \vec{F} \bullet d \vec{r}$
where the curve C is defined by $\vec{r}(t)=e^{t} \sin (t) \hat{i}+e^{t} \cos (t) \hat{j}$ where $0 \leq t \leq \pi$,

On this curve, $x=e^{t} \sin (t)$ and $y=e^{t} \cos (t)$. Also, the integral is independent of path, and a potential function for \vec{F} is

$$
\begin{aligned}
& f(x, y)=3 x+x^{2} y-y^{3} . \text { Hence, } \int_{C} \vec{F} \cdot d \vec{r}=f(x(\pi), y(\pi))-f(x(0), y(0)) \\
& =f\left(e^{\pi} \sin \pi, e^{\pi} \cos \pi\right)-f\left(e^{0} \sin (0), e^{0} \cos (0)\right) \\
& =f\left(0,-e^{\pi}\right)-f(0,1) \\
& =\left(3 \cdot 0+0^{2}\left(-e^{\pi}\right)-\left(-e^{\pi}\right)^{3}\right)-\left(3 \cdot 0+0^{2}(1)-1^{3}\right) \\
& =e^{3 \pi}+1 .
\end{aligned}
$$

Example 5: If $\vec{F}=y^{2} \hat{i}+(2 x y+z) \hat{j}+\left(y+3 z^{2}\right) \hat{k}$, find $\int_{C} \vec{F} \cdot d \vec{r}$ where C is any curve from $(0,0,0)$ to $(1,2,3)$.

To show that we have a gradient field, we have to verify that
$\left(y^{2}\right)_{y}=2 y=(2 x y+z)_{x},\left(y^{2}\right)_{z}=0=\left(y+3 z^{2}\right)_{x}$, and $(2 x y+z)_{z}=1=\left(y+3 z^{2}\right)_{z}$.
(Why?) Now that you know you have a gradient field, the steps below show you how to find a potential function.
$\int y^{2} d x=f(x, y, z)=x y^{2}+g(y, z)$
$2 x y+z=f_{y}=2 x y+g_{y} \Rightarrow f(x, y, z)=x y^{2}+y z+h(z)$
$y+3 z^{2}=f_{z}=y+h_{z} \Rightarrow f(x, y, z)=x y^{2}+y z+z^{3}$

Example 5: If $\vec{F}=y^{2} \hat{i}+(2 x y+z) \hat{j}+\left(y+3 z^{2}\right) \hat{k}$, find $\int_{C} \vec{F} \cdot d \vec{r}$ where C is any curve from $(0,0,0)$ to $(1,2,3)$.

Now that we know that $f(x, y, z)=x y^{2}+y z+z^{3}$, it follows that $\int_{C} \vec{F} \cdot d \vec{r}=f(1,2,3)-f(0,0,0)=4+6+27-0=37$.

