
KEPLER’S SECOND LAW
OF PLANETARY MOTION



Kepler’s First Law says that the orbit of a planet
is an ellipse with the sun at one focus.



Thus, suppose that this path is parametrized by 
r(t) with the sun placed at the origin.



Then by Newton’s Universal Law of Gravitation, the 
force of gravitational pull by the sun can be represented
by the following vector.

2 3
( ) ( )
( )( ) ( )

GMm r t GMmF r t
r tr t r t

= − = −



On the other hand, Newton also showed that 
Force = mass x acceleration.  Hence, …
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We’ll use this fact shortly.
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Kepler’s Second Law says that the position vector
from the sun to a planet sweeps out equal areas in
equal amounts of time.



Kepler’s Second Law says that the position vector
from the sun to a planet sweeps out equal areas in
equal amounts of time.

Another way to say this is that the rate of change of
area with respect to time is constant.
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Thus, let’s consider the following diagram.
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For small changes in t, the change in area is 
approximately the area of the triangle below.
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Using the cross product, we get the following.
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And now, we have consequences.
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We’ll show that this derivative is constant by showing
that the derivative of r x r’ is the zero vector.

1 ( ) ( )
2

1 ( )
2

1 1 ( )
2

1 ( )
2

A r t r

A r t r
t t

rr t
t

dA r t r t
dt

′=

Δ ≈ ×Δ

Δ
⇒ ≈ ⋅ ×Δ

Δ Δ
Δ

= ×

×

Δ

⇒



In the proof below, remember that we’ve already shown
that r and r’’ are parallel.

( )( ) ( )
( ) ( ) ( ) ( ) 0 0 0.

d r t r t
r t r t r t r t

dt
′×

′′ ′ ′= × + × = + =



In the proof below, remember that we’ve already shown
that r and r’’ are parallel.

( )( ) ( )
( ) ( ) ( ) ( ) 0 0 0.

d r t r t
r t r t r t r t

dt
′×

′′ ′ ′= × + × = + =

Therefore, ( ) ( ) is a constant vector
1 ( ) ( ) constant
2

 Area changes at a 
Equal areas are swept out by a position

constant rate
 vector

      in equal amounts of time.

r t r t
dA r t r t
dt

′×

′⇒ = × =

⇒
⇒



In the proof below, remember that we’ve already shown
that r and r’’ are parallel.

( )( ) ( )
( ) ( ) ( ) ( ) 0 0 0.

d r t r t
r t r t r t r t

dt
′×

′′ ′ ′= × + × = + =

Therefore, ( ) ( ) is a constant vector
1 ( ) ( ) constant
2

 Area changes at a 
Equal areas are swept out by a position

constant rate
 vector

      in equal amounts of time.

r t r t
dA r t r t
dt

′×

′⇒ = × =

⇒
⇒


