KEPLER'S SECOND LAW OF PLANETARY MOTION

Kepler's First Law says that the orbit of a planet is an ellipse with the sun at one focus.

Thus, suppose that this path is parametrized by $r(t)$ with the sun placed at the origin.

Then by Newton's Universal Law of Gravitation, the force of gravitational pull by the sun can be represented by the following vector.

On the other hand, Newton also showed that Force $=$ mass x acceleration. Hence, ...

Therefore, ...

$$
m \vec{r}^{\prime \prime}(t)=-\frac{G M m}{\|\vec{r}(t)\|^{3}} \vec{r}(t) \Rightarrow \vec{r}^{\prime \prime}(t)=-\frac{G M}{\|\vec{r}(t)\|^{3}} \vec{r}(t)
$$

Consequently, $\vec{r}^{\prime \prime}(t) \| \vec{r}(t)$.

$$
m \vec{r}^{\prime \prime}(t)=-\frac{G M m}{\|\vec{r}(t)\|^{3}} \vec{r}(t) \Rightarrow \vec{r}^{\prime \prime}(t)=-\frac{G M}{\|\vec{r}(t)\|^{3}} \vec{r}(t)
$$

Consequently, $\vec{r}^{\prime \prime}(t) \| \vec{r}(t)$.

We'll use this fact shortly.

$$
m \vec{r}^{\prime \prime}(t)=-\frac{G M m}{\|\vec{r}(t)\|^{3}} \vec{r}(t) \Rightarrow \vec{r}^{\prime \prime}(t)=-\frac{G M}{\|\vec{r}(t)\|^{3}} \vec{r}(t)
$$

Kepler's Second Law says that the position vector from the sun to a planet sweeps out equal areas in equal amounts of time.

Kepler's Second Law says that the position vector from the sun to a planet sweeps out equal areas in equal amounts of time.

Another way to say this is that the rate of change of area with respect to time is constant.

Thus, let's consider the following diagram.

For small changes in t, the change in area is approximately the area of the triangle below.

Using the cross product, we get the following.

$$
\Delta A \approx \frac{1}{2}\|\vec{r}(t) \times \Delta \vec{r}\|
$$

And now, we have consequences.

$$
\begin{aligned}
& \Delta A \approx \frac{1}{2}\|\vec{r}(t) \times \Delta \vec{r}\| \\
& \Rightarrow \frac{\Delta A}{\Delta t} \approx \frac{1}{2} \cdot \frac{1}{\Delta t}\|\vec{r}(t) \times \Delta \vec{r}\| \\
& =\frac{1}{2}\left\|\vec{r}(t) \times \frac{\Delta \vec{r}}{\Delta t}\right\| \\
& \Rightarrow \frac{d A}{d t}=\frac{1}{2}\left\|\vec{r}(t) \times \vec{r}^{\prime}(t)\right\|
\end{aligned}
$$

We'll show that this derivative is constant by showing

 that the derivative of $r x r^{\prime}$ is the zero vector.$$
\begin{aligned}
& \Delta A \approx \frac{1}{2}\|\vec{r}(t) \times \Delta \vec{r}\| \\
& \Rightarrow \frac{\Delta A}{\Delta t} \approx \frac{1}{2} \cdot \frac{1}{\Delta t}\|\vec{r}(t) \times \Delta \vec{r}\| \\
& =\frac{1}{2}\left\|\vec{r}(t) \times \frac{\Delta \vec{r}}{\Delta t}\right\| \\
& \Rightarrow \frac{d A}{d t}=\frac{1}{2}\left\|\vec{r}(t) \times \vec{r}^{\prime}(t)\right\|
\end{aligned}
$$

In the proof below, remember that we've already shown that r and r '" are parallel.

$$
\frac{d\left(\vec{r}(t) \times \vec{r}^{\prime}(t)\right)}{d t}=\vec{r}(t) \times \vec{r}^{\prime \prime}(t)+\vec{r}^{\prime}(t) \times \vec{r}^{\prime}(t)=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} . \square
$$

In the proof below, remember that we've already shown that r and r '" are parallel.

$$
\frac{d\left(\vec{r}(t) \times \vec{r}^{\prime}(t)\right)}{d t}=\vec{r}(t) \times \vec{r}^{\prime \prime}(t)+\vec{r}^{\prime}(t) \times \vec{r}^{\prime}(t)=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} . \square
$$

Therefore, $\vec{r}(t) \times \vec{r}^{\prime}(t)$ is a constant vector
$\Rightarrow \frac{d A}{d t}=\frac{1}{2}\left\|\vec{r}(t) \times \vec{r}^{\prime}(t)\right\|=$ constant
\Rightarrow Area changes at a constant rate
\Rightarrow Equal areas are swept out by a position vector in equal amounts of time.

In the proof below, remember that we've already shown that r and r "' are parallel.

$$
\frac{d\left(\vec{r}(t) \times \vec{r}^{\prime}(t)\right)}{d t}=\vec{r}(t) \times \vec{r}^{\prime \prime}(t)+\vec{r}^{\prime}(t) \times \vec{r}^{\prime}(t)=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} . \square
$$

Therefore, $\vec{r}(t) \times \vec{r}^{\prime}(t)$ is a constant vector
$\Rightarrow \frac{d A}{d t}=\frac{1}{2}\left\|\vec{r}(t) \times \vec{r}^{\prime}(t)\right\|=$ constant
\Rightarrow Area changes at a constant rate
\Rightarrow Equal areas are swept out by a position vector in equal amounts of time.

